|
from typing import Dict, List, Any |
|
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution |
|
import torch |
|
import base64 |
|
import logging |
|
import numpy as np |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
logger = logging.getLogger() |
|
logger.setLevel(logging.DEBUG) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64") |
|
self.model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64") |
|
|
|
self.model.to(device) |
|
|
|
def __call__(self, data: Any): |
|
""" |
|
Args: |
|
data (:obj:): |
|
binary image data to be labeled |
|
Return: |
|
A :obj:`string`:. Base64 encoded image string |
|
""" |
|
|
|
image = data["inputs"] |
|
inputs = self.processor(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = self.model(**inputs) |
|
|
|
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output = np.moveaxis(output, source=0, destination=-1) |
|
output = (output * 255.0).round().astype(np.uint8) |
|
|
|
img = Image.fromarray(output) |
|
buffered = BytesIO() |
|
img.save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
return img_str.decode() |