initial commit
Browse files- .gitignore +3 -0
- README.md +36 -1
- handler.py +48 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# PhpStorm / IDEA
|
2 |
+
.idea
|
3 |
+
|
README.md
CHANGED
@@ -1,3 +1,38 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- vision
|
4 |
+
- image-to-image
|
5 |
+
- endpoints-template
|
6 |
+
inference: false
|
7 |
+
pipeline_tag: image-to-image
|
8 |
+
base_model: caidas/swin2SR-classical-sr-x2-64
|
9 |
+
library_name: generic
|
10 |
---
|
11 |
+
|
12 |
+
# Fork of [caidas/swin2SR-classical-sr-x2-64](https://huggingface.co/caidas/swin2SR-classical-sr-x2-64) for a `image-to-image` Inference endpoint.
|
13 |
+
|
14 |
+
> Inspired by https://huggingface.co/sergeipetrov/swin2SR-classical-sr-x2-64-IE
|
15 |
+
|
16 |
+
This repository implements a `custom` task for `image-to-image` for 🤗 Inference Endpoints to allow image up scaling by doubling image resolution.
|
17 |
+
The code for the customized pipeline is in the handler.py.
|
18 |
+
|
19 |
+
To use deploy this model an Inference Endpoint you have to select `Custom` as task to use the `handler.py` file.
|
20 |
+
|
21 |
+
### expected Request payload
|
22 |
+
|
23 |
+
Image to be labeled as binary.
|
24 |
+
|
25 |
+
#### CURL
|
26 |
+
|
27 |
+
```
|
28 |
+
curl URL \
|
29 |
+
-X POST \
|
30 |
+
--data-binary @car.png \
|
31 |
+
-H "Content-Type: image/png"
|
32 |
+
```
|
33 |
+
|
34 |
+
#### Python
|
35 |
+
|
36 |
+
```python
|
37 |
+
requests.post(ENDPOINT_URL, headers={"Content-Type": "image/png"}, data=open("car.png", 'rb').read()).json()
|
38 |
+
```
|
handler.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
|
3 |
+
import torch
|
4 |
+
import base64
|
5 |
+
import logging
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
logger = logging.getLogger()
|
11 |
+
logger.setLevel(logging.DEBUG)
|
12 |
+
|
13 |
+
# check for GPU
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
|
17 |
+
class EndpointHandler:
|
18 |
+
def __init__(self, path=""):
|
19 |
+
# load the model
|
20 |
+
self.processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
|
21 |
+
self.model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
|
22 |
+
# move model to device
|
23 |
+
self.model.to(device)
|
24 |
+
|
25 |
+
def __call__(self, data: Any):
|
26 |
+
"""
|
27 |
+
Args:
|
28 |
+
data (:obj:):
|
29 |
+
binary image data to be labeled
|
30 |
+
Return:
|
31 |
+
A :obj:`string`:. Base64 encoded image string
|
32 |
+
"""
|
33 |
+
|
34 |
+
image = data["inputs"]
|
35 |
+
inputs = self.processor(image, return_tensors="pt").to(device)
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = self.model(**inputs)
|
38 |
+
|
39 |
+
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
40 |
+
output = np.moveaxis(output, source=0, destination=-1)
|
41 |
+
output = (output * 255.0).round().astype(np.uint8)
|
42 |
+
|
43 |
+
img = Image.fromarray(output)
|
44 |
+
buffered = BytesIO()
|
45 |
+
img.save(buffered, format="JPEG")
|
46 |
+
img_str = base64.b64encode(buffered.getvalue())
|
47 |
+
|
48 |
+
return img_str.decode()
|