|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- amazon_reviews_multi |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-sentiment |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: amazon_reviews_multi |
|
type: amazon_reviews_multi |
|
args: all_languages |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7648 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7648 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-sentiment |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5842 |
|
- Accuracy: 0.7648 |
|
- F1: 0.7648 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 33 |
|
- distributed_type: sagemaker_data_parallel |
|
- num_devices: 8 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 0.6405 | 0.53 | 5000 | 0.5826 | 0.7498 | 0.7498 | |
|
| 0.5698 | 1.07 | 10000 | 0.5686 | 0.7612 | 0.7612 | |
|
| 0.5286 | 1.6 | 15000 | 0.5593 | 0.7636 | 0.7636 | |
|
| 0.5141 | 2.13 | 20000 | 0.5842 | 0.7648 | 0.7648 | |
|
| 0.4763 | 2.67 | 25000 | 0.5736 | 0.7637 | 0.7637 | |
|
| 0.4549 | 3.2 | 30000 | 0.6027 | 0.7593 | 0.7593 | |
|
| 0.4231 | 3.73 | 35000 | 0.6017 | 0.7552 | 0.7552 | |
|
| 0.3965 | 4.27 | 40000 | 0.6489 | 0.7551 | 0.7551 | |
|
| 0.3744 | 4.8 | 45000 | 0.6426 | 0.7534 | 0.7534 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.3 |
|
- Pytorch 1.9.1 |
|
- Datasets 1.15.1 |
|
- Tokenizers 0.10.3 |
|
|