philomath-1209's picture
Update README.md
1577cef verified
|
raw
history blame
3.01 kB
metadata
license: wtfpl
datasets:
  - cakiki/rosetta-code
language:
  - en
metrics:
  - accuracy
library_name: transformers
pipeline_tag: text-classification
tags:
  - code
  - programming-language
  - code-classification
base_model: huggingface/CodeBERTa-small-v1

This Model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on cakiki/rosetta-code Dataset for 26 Programming Languages as mentioned below.

Training Details:

Model is trained for 25 epochs on Azure for nearly 26000 Datapoints for above Mentioned 26 Programming Languages
extracted from Dataset having 1006 of total Programming Language.

Programming Languages this model is able to detect vs Examples used for training

  1. 'ARM Assembly':
  2. 'AppleScript'
  3. 'C'
  4. 'C#'
  5. 'C++'
  6. 'COBOL'
  7. 'Erlang'
  8. 'Fortran'
  9. 'Go'
  10. 'Java'
  11. 'JavaScript'
  12. 'Kotlin'
  13. 'Lua
  14. 'Mathematica/Wolfram Language'
  15. 'PHP'
  16. 'Pascal'
  17. 'Perl'
  18. 'PowerShell'
  19. 'Python'
  20. 'R
  21. 'Ruby'
  22. 'Rust'
  23. 'Scala'
  24. 'Swift'
  25. 'Visual Basic .NET'
  26. 'jq'

Below is the Training Result for 25 epochs.

  • Training Computer Configuration:
    • GPU:1xNvidia Tesla T4,
    • VRam: 16GB,
    • Ram:112GB,
    • Cores:6 Cores
  • Training Time taken: exactly 7 hours for 25 epochs
  • Training Hyper-parameters:

image/png

training detail.png

Inference Code

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
model_name = 'philomath-1209/programming-language-identification'
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name)


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
text = """
PROGRAM Triangle
   IMPLICIT NONE
   REAL :: a, b, c, Area
   PRINT *, 'Welcome, please enter the&
            &lengths of the 3 sides.'
   READ *, a, b, c
   PRINT *, 'Triangle''s area:  ', Area(a,b,c)
  END PROGRAM Triangle
  FUNCTION Area(x,y,z)
   IMPLICIT NONE
   REAL :: Area            ! function type
   REAL, INTENT( IN ) :: x, y, z
   REAL :: theta, height
   theta = ACOS((x**2+y**2-z**2)/(2.0*x*y))
   height = x*SIN(theta); Area = 0.5*y*height
  END FUNCTION Area

"""
inputs = loaded_tokenizer(text, return_tensors="pt",truncation=True)
with torch.no_grad():
  logits = loaded_model(**inputs).logits
predicted_class_id = logits.argmax().item()
loaded_model.config.id2label[predicted_class_id]