petili's picture
End of training
fc91f73
metadata
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-russian
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-ru-snr10-commonvoice_train3000_val200
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: ru
          split: test[0:200]
          args: ru
        metrics:
          - name: Wer
            type: wer
            value: 0.5075114304376225

wav2vec2-large-xlsr-53-ru-snr10-commonvoice_train3000_val200

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-russian on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3736
  • Wer: 0.5075
  • Cer: 0.2395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9298 0.96 180 1.0829 0.6153 0.2984
0.6185 1.91 360 1.1071 0.5924 0.2899
0.5395 2.87 540 1.0219 0.5558 0.2604
0.464 3.83 720 1.0042 0.5363 0.2564
0.4346 4.79 900 0.9817 0.5323 0.2403
0.4025 5.74 1080 1.0918 0.5558 0.2549
0.358 6.7 1260 1.0987 0.5336 0.2437
0.3466 7.66 1440 1.0802 0.5349 0.2437
0.3215 8.62 1620 1.1377 0.5467 0.2588
0.3247 9.57 1800 1.0324 0.5153 0.2350
0.287 10.53 1980 1.1466 0.5565 0.2603
0.2716 11.49 2160 1.2634 0.5532 0.2536
0.2555 12.45 2340 1.1859 0.5160 0.2318
0.2454 13.4 2520 1.1147 0.5186 0.2278
0.2299 14.36 2700 1.1287 0.5167 0.2282
0.2269 15.32 2880 1.2123 0.5042 0.2275
0.2132 16.28 3060 1.1219 0.5082 0.2297
0.1965 17.23 3240 1.2263 0.5167 0.2345
0.1943 18.19 3420 1.2679 0.5284 0.2353
0.1867 19.15 3600 1.2097 0.5186 0.2422
0.1851 20.11 3780 1.3118 0.5147 0.2330
0.1709 21.06 3960 1.1834 0.5193 0.2374
0.1757 22.02 4140 1.3010 0.5036 0.2272
0.1661 22.98 4320 1.2384 0.5075 0.2313
0.1607 23.94 4500 1.3642 0.5219 0.2421
0.1611 24.89 4680 1.3055 0.5108 0.2363
0.1567 25.85 4860 1.3666 0.5140 0.2383
0.1469 26.81 5040 1.3888 0.5101 0.2367
0.1432 27.77 5220 1.3478 0.5206 0.2333
0.1479 28.72 5400 1.3297 0.4918 0.2291
0.144 29.68 5580 1.3736 0.5075 0.2395

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0