distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0105
  • Accuracy: {'accuracy': 0.892}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5723 {'accuracy': 0.834}
0.4214 2.0 500 0.5061 {'accuracy': 0.873}
0.4214 3.0 750 0.6230 {'accuracy': 0.889}
0.1992 4.0 1000 0.7189 {'accuracy': 0.883}
0.1992 5.0 1250 0.9885 {'accuracy': 0.879}
0.066 6.0 1500 0.8311 {'accuracy': 0.884}
0.066 7.0 1750 0.8853 {'accuracy': 0.894}
0.0155 8.0 2000 0.9528 {'accuracy': 0.895}
0.0155 9.0 2250 0.9955 {'accuracy': 0.889}
0.0128 10.0 2500 1.0105 {'accuracy': 0.892}

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for pavi156/distilbert-base-uncased-lora-text-classification

Adapter
(221)
this model