BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-honsec10k-embed")
# Run inference
sentences = [
    'Item 8 typically refers to Financial Statements and Supplementary Data in a document.',
    'What does Item 8 in a document usually represent?',
    'What are the maximum leverage ratios specified under the Senior Credit Facilities for the periods ending fourth quarter of 2023 and first quarter of 2024?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7057
cosine_accuracy@3 0.8371
cosine_accuracy@5 0.8743
cosine_accuracy@10 0.9129
cosine_precision@1 0.7057
cosine_precision@3 0.279
cosine_precision@5 0.1749
cosine_precision@10 0.0913
cosine_recall@1 0.7057
cosine_recall@3 0.8371
cosine_recall@5 0.8743
cosine_recall@10 0.9129
cosine_ndcg@10 0.8114
cosine_mrr@10 0.7787
cosine_map@100 0.7822

Information Retrieval

Metric Value
cosine_accuracy@1 0.7057
cosine_accuracy@3 0.8329
cosine_accuracy@5 0.8714
cosine_accuracy@10 0.9129
cosine_precision@1 0.7057
cosine_precision@3 0.2776
cosine_precision@5 0.1743
cosine_precision@10 0.0913
cosine_recall@1 0.7057
cosine_recall@3 0.8329
cosine_recall@5 0.8714
cosine_recall@10 0.9129
cosine_ndcg@10 0.8108
cosine_mrr@10 0.778
cosine_map@100 0.7816

Information Retrieval

Metric Value
cosine_accuracy@1 0.7157
cosine_accuracy@3 0.8343
cosine_accuracy@5 0.87
cosine_accuracy@10 0.9057
cosine_precision@1 0.7157
cosine_precision@3 0.2781
cosine_precision@5 0.174
cosine_precision@10 0.0906
cosine_recall@1 0.7157
cosine_recall@3 0.8343
cosine_recall@5 0.87
cosine_recall@10 0.9057
cosine_ndcg@10 0.8123
cosine_mrr@10 0.7823
cosine_map@100 0.7863

Information Retrieval

Metric Value
cosine_accuracy@1 0.6929
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8614
cosine_accuracy@10 0.9029
cosine_precision@1 0.6929
cosine_precision@3 0.2724
cosine_precision@5 0.1723
cosine_precision@10 0.0903
cosine_recall@1 0.6929
cosine_recall@3 0.8171
cosine_recall@5 0.8614
cosine_recall@10 0.9029
cosine_ndcg@10 0.7975
cosine_mrr@10 0.7638
cosine_map@100 0.7673

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 44.43 tokens
    • max: 248 tokens
    • min: 7 tokens
    • mean: 20.52 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    Net deferred tax liabilities $
    ITEM 3. LEGAL PROCEEDINGS Please see the legal proceedings described in Note 21. Commitments and Contingencies included in Item 8 of Part II of this report. In what part and item of the report is Note 21 located?
    During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million. What total amount was spent on share repurchases during fiscal year 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.1537 - - - -
0.9746 12 - 0.7517 0.7620 0.7633 0.7636
1.6244 20 0.4387 - - - -
1.9492 24 - 0.7616 0.7802 0.7796 0.7769
2.4365 30 0.3113 - - - -
2.9239 36 - 0.7668 0.7837 0.7809 0.7821
3.2487 40 0.2554 - - - -
3.8985 48 - 0.7673 0.7863 0.7816 0.7822
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
22
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pavanmantha/bge-base-en-honsec10k-embed

Finetuned
(323)
this model

Evaluation results