base_model:
- google/flan-t5-large
library_name: transformers
license: mit
A Text-to-Triple Model
Base Model: Flan-T5-Large by Google
Base Dataset: WikiOFGraph (containing 5.85M pairs of high-quality text-triples)
Trained by Patrick Jiang @ UIUC
Wandb Training Report (Dec 12, 2024)
Example Input:
"William Gerald Standridge (November 27, 1953 – April 12, 2014) was an American stock car racing driver. He was a competitor in the NASCAR Winston Cup Series and Busch Series."
Output:
(S> William gerald standridge| P> Nationality| O> American),
(S> William gerald standridge| P> Occupation| O> Stock car racing driver),
(S> William gerald standridge| P> Competitor| O> Busch series),
(S> William gerald standridge| P> Competitor| O> Nascar winston cup series),
(S> William gerald standridge| P> Birth date| O> November 27, 1953),
(S> William gerald standridge| P> Death date| O> April 12, 2014)
How to Run?
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
def generate_triples(input_text: str, model_path: str = "pat-jj/text2triple-flan-t5"):
# Initialize tokenizer and model
tokenizer = T5Tokenizer.from_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.bfloat16 # Use bfloat16 for efficiency
)
# Tokenize input with proper padding and attention mask
inputs = tokenizer(
input_text,
max_length=512,
padding='max_length',
truncation=True,
return_tensors="pt"
)
# Move inputs to the same device as model
input_ids = inputs['input_ids'].to(model.device)
attention_mask = inputs['attention_mask'].to(model.device)
# Generate with better parameters
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_length=512,
num_beams=4, # Use beam search
early_stopping=True,
length_penalty=0.6, # Penalize very long outputs
use_cache=True # Use KV cache for faster generation
)
# Decode and return the generated triples
generated_triples = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_triples
Example usage
input_text = """Albert Einstein was born in Ulm, Germany in 1879. He developed the theory of relativity and won the Nobel Prize in Physics in 1921.
Einstein worked as a professor at Princeton University until his death in 1955."""
generated_triples = generate_triples(input_text)
print("Generated triples:", generated_triples)
Output:
Generated triples: (S> Albert einstein| P> Birth place| O> Ulm, germany), (S> Albert einstein| P> Birth year| O> 1879), (S> Albert einstein| P> Award| O> Nobel prize in physics), (S> Albert einstein| P> Death year| O> 1955), (S> Albert einstein| P> Occupation| O> Professor), (S> Albert einstein| P> Workplace| O> Princeton university)
Paper of WikiOfGraph dataset:
Daehee Kim et al., "Ontology-Free General-Domain Knowledge Graph-to-Text Generation Dataset Synthesis using Large Language Model", 2024.
Cite This Model
@misc {patrick_jiang_2024,
author = { {Patrick Jiang} },
title = { text2triple-flan-t5 (Revision 4291171) },
year = 2024,
url = { https://huggingface.co/pat-jj/text2triple-flan-t5 },
doi = { 10.57967/hf/3783 },
publisher = { Hugging Face }
}