metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
- calibration
- uncertainty
model-index:
- name: apricot_clustering_trivia_qa_deberta-v3-base_for_vicuna-7b-v1.5
results: []
datasets:
- mandarjoshi/trivia_qa
apricot_clustering_trivia_qa_deberta-v3-base_for_vicuna-7b-v1.5
This model is fine-tuned for black-box LLM calibration as part of the 🍑 Apricot paper "Calibrating Large Language Models Using Their Generations Only" (ACL 2024).
Model description
This model is a fine-tuned version of microsoft/deberta-v3-base to predict the calibration score for the lmsys/vicuna-7b-v1.5 model on the questions from the trivia_qa dataset. It uses the clustering type of calibration target score.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
TODO: update the values below
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.0+cu117
- Datasets 2.14.6
- Tokenizers 0.13.3