from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the base model and tokenizer
tokenizer_model = "unsloth/Phi-3-mini-4k-instruct"
lora_model = "oztrkoguz/phi3_short_story_merged_bfloat16"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model)
model = AutoModelForCausalLM.from_pretrained(lora_model).to("cuda")

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
create a short story from this keywords

### Input:
{}

### Response:
{}"""

# Use the merged model for inference
inputs = tokenizer(
[
    alpaca_prompt.format(
        "cat, dog, human",
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")


with torch.no_grad():
    output = model.generate(
        **inputs,
        max_length=100
    )

generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)


Downloads last month
40
Safetensors
Model size
3.82B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train oztrkoguz/phi3_short_story_merged_bfloat16