File size: 2,915 Bytes
4638f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: google/t5-v1_1-large
tags:
- generated_from_trainer
model-index:
- name: ghc-google-t5-v1_1-large-inter_model-dataset-frequency-human_annots_str
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ghc-google-t5-v1_1-large-inter_model-dataset-frequency-human_annots_str

This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4160

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.5863        | 1.0   | 345   | 2.2862          |
| 1.9673        | 2.0   | 690   | 2.0705          |
| 1.7865        | 3.0   | 1035  | 1.8048          |
| 0.0714        | 4.0   | 1380  | 0.0459          |
| 0.0618        | 5.0   | 1725  | 0.0456          |
| 0.0596        | 6.0   | 2070  | 0.0476          |
| 0.0532        | 7.0   | 2415  | 0.0438          |
| 0.0503        | 8.0   | 2760  | 0.0405          |
| 0.048         | 9.0   | 3105  | 0.0377          |
| 0.0462        | 10.0  | 3450  | 0.0455          |
| 0.036         | 11.0  | 3795  | 0.0358          |
| 0.0447        | 12.0  | 4140  | 0.0355          |
| 0.0416        | 13.0  | 4485  | 0.0351          |
| 0.0413        | 14.0  | 4830  | 0.0331          |
| 0.0409        | 15.0  | 5175  | 0.0320          |
| 0.0411        | 16.0  | 5520  | 0.0333          |
| 0.0363        | 17.0  | 5865  | 0.0322          |
| 0.0378        | 18.0  | 6210  | 0.0329          |
| 0.0345        | 19.0  | 6555  | 0.0312          |
| 0.0328        | 20.0  | 6900  | 0.0311          |
| 0.0392        | 21.0  | 7245  | 0.0303          |
| 0.0392        | 22.0  | 7590  | 0.0296          |
| 0.0353        | 23.0  | 7935  | 0.0300          |
| 0.0331        | 24.0  | 8280  | 0.0299          |
| 0.0306        | 25.0  | 8625  | 0.0290          |
| 0.0313        | 26.0  | 8970  | 0.0294          |
| 0.0303        | 27.0  | 9315  | 0.0296          |
| 0.0378        | 28.0  | 9660  | 0.0292          |
| 0.0358        | 29.0  | 10005 | 0.0292          |
| 0.0328        | 30.0  | 10350 | 0.0292          |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1