ghc-google-t5-v1_1-large-inter_model-dataset-frequency-human_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4160

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
2.5863 1.0 345 2.2862
1.9673 2.0 690 2.0705
1.7865 3.0 1035 1.8048
0.0714 4.0 1380 0.0459
0.0618 5.0 1725 0.0456
0.0596 6.0 2070 0.0476
0.0532 7.0 2415 0.0438
0.0503 8.0 2760 0.0405
0.048 9.0 3105 0.0377
0.0462 10.0 3450 0.0455
0.036 11.0 3795 0.0358
0.0447 12.0 4140 0.0355
0.0416 13.0 4485 0.0351
0.0413 14.0 4830 0.0331
0.0409 15.0 5175 0.0320
0.0411 16.0 5520 0.0333
0.0363 17.0 5865 0.0322
0.0378 18.0 6210 0.0329
0.0345 19.0 6555 0.0312
0.0328 20.0 6900 0.0311
0.0392 21.0 7245 0.0303
0.0392 22.0 7590 0.0296
0.0353 23.0 7935 0.0300
0.0331 24.0 8280 0.0299
0.0306 25.0 8625 0.0290
0.0313 26.0 8970 0.0294
0.0303 27.0 9315 0.0296
0.0378 28.0 9660 0.0292
0.0358 29.0 10005 0.0292
0.0328 30.0 10350 0.0292

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/ghc-google-t5-v1_1-large-inter_model-dataset-frequency-human_annots_str

Finetuned
(103)
this model