owanr's picture
End of training
4b6ac7a
metadata
license: apache-2.0
base_model: google/t5-v1_1-large
tags:
  - generated_from_trainer
model-index:
  - name: Sentiment-google-t5-v1_1-large-intra_model-shuffle
    results: []

Sentiment-google-t5-v1_1-large-intra_model-shuffle

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
26.6182 1.0 44 31.1790
25.1664 2.0 88 25.9630
19.7407 3.0 132 17.5483
17.0241 4.0 176 15.7951
14.1013 5.0 220 13.6385
12.6633 6.0 264 12.1849
11.7434 7.0 308 11.5528
10.4633 8.0 352 10.7603
10.0142 9.0 396 9.7449
9.4309 10.0 440 9.4058
9.4721 11.0 484 9.2254
8.9759 12.0 528 9.0880
8.9786 13.0 572 9.0002
8.8538 14.0 616 8.9090
8.9413 15.0 660 8.8425
8.7639 16.0 704 8.7726
8.7977 17.0 748 8.6950
8.5634 18.0 792 8.6210
8.5154 19.0 836 8.5771
8.3299 20.0 880 8.5047
8.2768 21.0 924 8.4541
8.2174 22.0 968 8.3483
4.2638 23.0 1012 3.7590
3.9317 24.0 1056 3.7476
3.8703 25.0 1100 3.7268
3.8648 26.0 1144 3.7015
3.7132 27.0 1188 3.6620
3.7982 28.0 1232 3.6444
3.7453 29.0 1276 3.6329
3.6892 30.0 1320 3.5919
2.7956 31.0 1364 2.0820
1.2507 32.0 1408 1.0523
1.1008 33.0 1452 1.0461
1.1059 34.0 1496 1.0464
1.1015 35.0 1540 1.0460
1.079 36.0 1584 1.0446
1.0946 37.0 1628 1.0438
1.0985 38.0 1672 1.0461
1.0817 39.0 1716 1.0419
1.0723 40.0 1760 1.0417
1.0867 41.0 1804 1.0411
1.0654 42.0 1848 1.0415
1.0739 43.0 1892 1.0385
1.0643 44.0 1936 1.0395
1.0585 45.0 1980 1.0359
1.0784 46.0 2024 1.0375
1.0831 47.0 2068 1.0349
1.0652 48.0 2112 1.0355
1.0687 49.0 2156 1.0333
1.0717 50.0 2200 1.0350
1.0576 51.0 2244 1.0339
1.0666 52.0 2288 1.0339
1.0648 53.0 2332 1.0334
1.0624 54.0 2376 1.0323
1.0745 55.0 2420 1.0321
1.0542 56.0 2464 1.0339
1.054 57.0 2508 1.0320
1.0866 58.0 2552 1.0294
1.0704 59.0 2596 1.0315
1.0706 60.0 2640 1.0303
1.0464 61.0 2684 1.0312
1.0614 62.0 2728 1.0288
1.0645 63.0 2772 1.0302
1.057 64.0 2816 1.0318
1.0586 65.0 2860 1.0285
1.0724 66.0 2904 1.0300
1.0539 67.0 2948 1.0271
1.0536 68.0 2992 1.0292
1.0595 69.0 3036 1.0271
1.0504 70.0 3080 1.0296
1.0673 71.0 3124 1.0264
1.0548 72.0 3168 1.0277
1.0519 73.0 3212 1.0280
1.0519 74.0 3256 1.0260
1.0497 75.0 3300 1.0286
1.0551 76.0 3344 1.0253
1.0605 77.0 3388 1.0250
1.0495 78.0 3432 1.0250
1.0546 79.0 3476 1.0263
1.0615 80.0 3520 1.0255
1.0603 81.0 3564 1.0238
1.0374 82.0 3608 1.0244
1.0418 83.0 3652 1.0252
1.0603 84.0 3696 1.0241
1.0459 85.0 3740 1.0233
1.0598 86.0 3784 1.0222
1.0589 87.0 3828 1.0232
1.0415 88.0 3872 1.0223
1.0521 89.0 3916 1.0202
1.0443 90.0 3960 1.0198
1.0629 91.0 4004 1.0200
1.0616 92.0 4048 1.0194
1.059 93.0 4092 1.0189
1.036 94.0 4136 1.0226
1.0578 95.0 4180 1.0194
1.0463 96.0 4224 1.0180
1.0586 97.0 4268 1.0169
1.0541 98.0 4312 1.0182
1.052 99.0 4356 1.0154
1.0443 100.0 4400 1.0160
1.0573 101.0 4444 1.0131
1.0423 102.0 4488 1.0151
1.0532 103.0 4532 1.0127
1.0527 104.0 4576 1.0117
1.0387 105.0 4620 1.0120
1.0514 106.0 4664 1.0101
1.0436 107.0 4708 1.0110
1.0377 108.0 4752 1.0099
1.044 109.0 4796 1.0242
1.0399 110.0 4840 1.0139
1.0568 111.0 4884 1.0099
1.079 112.0 4928 1.0127
1.0611 113.0 4972 1.0269
1.0947 114.0 5016 1.0337
1.0635 115.0 5060 1.0312
1.0732 116.0 5104 1.0279

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1