Sentiment-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str
This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
19.7788 | 1.0 | 44 | 23.9563 |
15.9283 | 2.0 | 88 | 11.8553 |
10.0222 | 3.0 | 132 | 9.4991 |
8.9528 | 4.0 | 176 | 9.0638 |
8.4671 | 5.0 | 220 | 8.7748 |
8.189 | 6.0 | 264 | 8.6661 |
8.2203 | 7.0 | 308 | 8.5367 |
7.9303 | 8.0 | 352 | 8.1591 |
7.5313 | 9.0 | 396 | 7.7616 |
7.3476 | 10.0 | 440 | 7.4948 |
7.1959 | 11.0 | 484 | 7.3478 |
6.9493 | 12.0 | 528 | 7.2555 |
6.8091 | 13.0 | 572 | 7.1311 |
0.9281 | 14.0 | 616 | 0.6867 |
0.7487 | 15.0 | 660 | 0.6683 |
0.7383 | 16.0 | 704 | 0.6678 |
0.7336 | 17.0 | 748 | 0.6632 |
0.7256 | 18.0 | 792 | 0.6566 |
0.7344 | 19.0 | 836 | 0.6584 |
0.7237 | 20.0 | 880 | 0.6619 |
0.7204 | 21.0 | 924 | 0.6619 |
0.7088 | 22.0 | 968 | 0.6566 |
0.7017 | 23.0 | 1012 | 0.6556 |
0.7136 | 24.0 | 1056 | 0.6566 |
0.7078 | 25.0 | 1100 | 0.6582 |
0.7165 | 26.0 | 1144 | 0.6557 |
0.706 | 27.0 | 1188 | 0.6559 |
0.7146 | 28.0 | 1232 | 0.6537 |
0.7138 | 29.0 | 1276 | 0.6546 |
0.706 | 30.0 | 1320 | 0.6559 |
0.7067 | 31.0 | 1364 | 0.6567 |
0.7137 | 32.0 | 1408 | 0.6599 |
0.7 | 33.0 | 1452 | 0.6550 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
Model tree for owanr/Sentiment-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str
Base model
google/t5-v1_1-large