Sentiment-google-t5-v1_1-large-intra_model-dataset-frequency-human_annots_str
This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
20.8833 | 1.0 | 44 | 25.4149 |
17.9582 | 2.0 | 88 | 15.2004 |
12.4496 | 3.0 | 132 | 11.1146 |
10.6482 | 4.0 | 176 | 10.7774 |
10.0038 | 5.0 | 220 | 10.5784 |
9.8548 | 6.0 | 264 | 10.4290 |
9.7749 | 7.0 | 308 | 10.2568 |
9.4275 | 8.0 | 352 | 9.8102 |
8.8894 | 9.0 | 396 | 9.2370 |
8.4944 | 10.0 | 440 | 8.9575 |
8.4109 | 11.0 | 484 | 8.7954 |
8.3217 | 12.0 | 528 | 8.6723 |
7.8791 | 13.0 | 572 | 8.5306 |
1.0442 | 14.0 | 616 | 0.8718 |
0.9076 | 15.0 | 660 | 0.8507 |
0.9013 | 16.0 | 704 | 0.8517 |
0.9 | 17.0 | 748 | 0.8475 |
0.8835 | 18.0 | 792 | 0.8480 |
0.8842 | 19.0 | 836 | 0.8525 |
0.8836 | 20.0 | 880 | 0.8532 |
0.8845 | 21.0 | 924 | 0.8458 |
0.8941 | 22.0 | 968 | 0.8485 |
0.8819 | 23.0 | 1012 | 0.8450 |
0.8921 | 24.0 | 1056 | 0.8513 |
0.888 | 25.0 | 1100 | 0.8444 |
0.8857 | 26.0 | 1144 | 0.8486 |
0.8737 | 27.0 | 1188 | 0.8424 |
0.8766 | 28.0 | 1232 | 0.8423 |
0.8746 | 29.0 | 1276 | 0.8430 |
0.8829 | 30.0 | 1320 | 0.8402 |
0.862 | 31.0 | 1364 | 0.8366 |
0.8601 | 32.0 | 1408 | 0.8386 |
0.8658 | 33.0 | 1452 | 0.8326 |
0.8737 | 34.0 | 1496 | 0.8342 |
0.8662 | 35.0 | 1540 | 0.8309 |
0.8722 | 36.0 | 1584 | 0.8290 |
0.8682 | 37.0 | 1628 | 0.8216 |
0.859 | 38.0 | 1672 | 0.8430 |
0.8554 | 39.0 | 1716 | 0.8170 |
0.8565 | 40.0 | 1760 | 0.8114 |
0.8402 | 41.0 | 1804 | 0.8079 |
0.848 | 42.0 | 1848 | 0.8178 |
0.8458 | 43.0 | 1892 | 0.8123 |
0.842 | 44.0 | 1936 | 0.8026 |
0.8259 | 45.0 | 1980 | 0.7977 |
0.8313 | 46.0 | 2024 | 0.7931 |
0.8418 | 47.0 | 2068 | 0.7935 |
0.8253 | 48.0 | 2112 | 0.7892 |
0.8251 | 49.0 | 2156 | 0.7851 |
0.8153 | 50.0 | 2200 | 0.7833 |
0.809 | 51.0 | 2244 | 0.7822 |
0.8137 | 52.0 | 2288 | 0.7759 |
0.8152 | 53.0 | 2332 | 0.7781 |
0.8201 | 54.0 | 2376 | 0.7812 |
0.8049 | 55.0 | 2420 | 0.7795 |
0.8003 | 56.0 | 2464 | 0.7730 |
0.797 | 57.0 | 2508 | 0.7692 |
0.8031 | 58.0 | 2552 | 0.7696 |
0.7907 | 59.0 | 2596 | 0.7685 |
0.7935 | 60.0 | 2640 | 0.7612 |
0.7958 | 61.0 | 2684 | 0.7558 |
0.7932 | 62.0 | 2728 | 0.7539 |
0.7944 | 63.0 | 2772 | 0.7510 |
0.7952 | 64.0 | 2816 | 0.7500 |
0.7838 | 65.0 | 2860 | 0.7551 |
0.7797 | 66.0 | 2904 | 0.7417 |
0.7821 | 67.0 | 2948 | 0.7399 |
0.7739 | 68.0 | 2992 | 0.7440 |
0.7697 | 69.0 | 3036 | 0.7331 |
0.7709 | 70.0 | 3080 | 0.7343 |
0.7679 | 71.0 | 3124 | 0.7389 |
0.7506 | 72.0 | 3168 | 0.7296 |
0.7645 | 73.0 | 3212 | 0.7336 |
0.7501 | 74.0 | 3256 | 0.7278 |
0.7602 | 75.0 | 3300 | 0.7268 |
0.7475 | 76.0 | 3344 | 0.7221 |
0.7561 | 77.0 | 3388 | 0.7211 |
0.7534 | 78.0 | 3432 | 0.7135 |
0.7582 | 79.0 | 3476 | 0.7173 |
0.734 | 80.0 | 3520 | 0.7096 |
0.7481 | 81.0 | 3564 | 0.7094 |
0.7454 | 82.0 | 3608 | 0.7053 |
0.7408 | 83.0 | 3652 | 0.6956 |
0.7189 | 84.0 | 3696 | 0.6943 |
0.7467 | 85.0 | 3740 | 0.6997 |
0.7544 | 86.0 | 3784 | 0.7049 |
0.7221 | 87.0 | 3828 | 0.6903 |
0.7358 | 88.0 | 3872 | 0.6851 |
0.727 | 89.0 | 3916 | 0.6807 |
0.7127 | 90.0 | 3960 | 0.6828 |
0.7158 | 91.0 | 4004 | 0.6837 |
0.7284 | 92.0 | 4048 | 0.6818 |
0.7153 | 93.0 | 4092 | 0.6906 |
0.7172 | 94.0 | 4136 | 0.6804 |
0.7076 | 95.0 | 4180 | 0.6694 |
0.7009 | 96.0 | 4224 | 0.6722 |
0.6915 | 97.0 | 4268 | 0.6775 |
0.6997 | 98.0 | 4312 | 0.6596 |
0.6924 | 99.0 | 4356 | 0.6595 |
0.704 | 100.0 | 4400 | 0.6598 |
0.6889 | 101.0 | 4444 | 0.6504 |
0.6932 | 102.0 | 4488 | 0.6570 |
0.6847 | 103.0 | 4532 | 0.6477 |
0.6851 | 104.0 | 4576 | 0.6408 |
0.6843 | 105.0 | 4620 | 0.6392 |
0.6925 | 106.0 | 4664 | 0.6330 |
0.6648 | 107.0 | 4708 | 0.6289 |
0.6744 | 108.0 | 4752 | 0.6258 |
0.6752 | 109.0 | 4796 | 0.6439 |
0.6729 | 110.0 | 4840 | 0.6228 |
0.6649 | 111.0 | 4884 | 0.6388 |
0.6567 | 112.0 | 4928 | 0.6248 |
0.6556 | 113.0 | 4972 | 0.6196 |
0.6607 | 114.0 | 5016 | 0.6133 |
0.6487 | 115.0 | 5060 | 0.6235 |
0.6636 | 116.0 | 5104 | 0.6159 |
0.6625 | 117.0 | 5148 | 0.6030 |
0.6363 | 118.0 | 5192 | 0.6072 |
0.6504 | 119.0 | 5236 | 0.5983 |
0.6406 | 120.0 | 5280 | 0.6009 |
0.6283 | 121.0 | 5324 | 0.5955 |
0.612 | 122.0 | 5368 | 0.5883 |
0.6295 | 123.0 | 5412 | 0.5879 |
0.6392 | 124.0 | 5456 | 0.5848 |
0.6144 | 125.0 | 5500 | 0.5814 |
0.6204 | 126.0 | 5544 | 0.5856 |
0.6144 | 127.0 | 5588 | 0.5826 |
0.6119 | 128.0 | 5632 | 0.5788 |
0.6125 | 129.0 | 5676 | 0.5814 |
0.6093 | 130.0 | 5720 | 0.5729 |
0.6035 | 131.0 | 5764 | 0.5702 |
0.6227 | 132.0 | 5808 | 0.5663 |
0.6287 | 133.0 | 5852 | 0.5608 |
0.6092 | 134.0 | 5896 | 0.5554 |
0.6158 | 135.0 | 5940 | 0.5507 |
0.6113 | 136.0 | 5984 | 0.5555 |
0.5976 | 137.0 | 6028 | 0.5547 |
0.595 | 138.0 | 6072 | 0.5436 |
0.5891 | 139.0 | 6116 | 0.5417 |
0.583 | 140.0 | 6160 | 0.5375 |
0.5915 | 141.0 | 6204 | 0.5304 |
0.5855 | 142.0 | 6248 | 0.5253 |
0.5875 | 143.0 | 6292 | 0.5364 |
0.581 | 144.0 | 6336 | 0.5245 |
0.5806 | 145.0 | 6380 | 0.5220 |
0.5589 | 146.0 | 6424 | 0.5150 |
0.573 | 147.0 | 6468 | 0.5252 |
0.5843 | 148.0 | 6512 | 0.5169 |
0.5705 | 149.0 | 6556 | 0.5156 |
0.5756 | 150.0 | 6600 | 0.5208 |
0.5575 | 151.0 | 6644 | 0.5028 |
0.5574 | 152.0 | 6688 | 0.5049 |
0.5598 | 153.0 | 6732 | 0.5054 |
0.5571 | 154.0 | 6776 | 0.5096 |
0.5673 | 155.0 | 6820 | 0.5012 |
0.5634 | 156.0 | 6864 | 0.4902 |
0.5601 | 157.0 | 6908 | 0.4949 |
0.5423 | 158.0 | 6952 | 0.4851 |
0.5568 | 159.0 | 6996 | 0.5020 |
0.5664 | 160.0 | 7040 | 0.4846 |
0.5523 | 161.0 | 7084 | 0.4865 |
0.5502 | 162.0 | 7128 | 0.4797 |
0.5374 | 163.0 | 7172 | 0.4735 |
0.557 | 164.0 | 7216 | 0.4784 |
0.5481 | 165.0 | 7260 | 0.4771 |
0.5509 | 166.0 | 7304 | 0.4688 |
0.5285 | 167.0 | 7348 | 0.4849 |
0.5312 | 168.0 | 7392 | 0.4741 |
0.5383 | 169.0 | 7436 | 0.4645 |
0.5413 | 170.0 | 7480 | 0.4724 |
0.524 | 171.0 | 7524 | 0.4583 |
0.5129 | 172.0 | 7568 | 0.4674 |
0.5302 | 173.0 | 7612 | 0.4565 |
0.5218 | 174.0 | 7656 | 0.4552 |
0.5189 | 175.0 | 7700 | 0.4583 |
0.5257 | 176.0 | 7744 | 0.4529 |
0.5216 | 177.0 | 7788 | 0.4489 |
0.5206 | 178.0 | 7832 | 0.4460 |
0.5241 | 179.0 | 7876 | 0.4431 |
0.5158 | 180.0 | 7920 | 0.4413 |
0.509 | 181.0 | 7964 | 0.4492 |
0.5111 | 182.0 | 8008 | 0.4431 |
0.5174 | 183.0 | 8052 | 0.4382 |
0.5122 | 184.0 | 8096 | 0.4305 |
0.4983 | 185.0 | 8140 | 0.4346 |
0.5022 | 186.0 | 8184 | 0.4358 |
0.4951 | 187.0 | 8228 | 0.4357 |
0.4989 | 188.0 | 8272 | 0.4325 |
0.5096 | 189.0 | 8316 | 0.4291 |
0.503 | 190.0 | 8360 | 0.4324 |
0.4954 | 191.0 | 8404 | 0.4277 |
0.5071 | 192.0 | 8448 | 0.4210 |
0.505 | 193.0 | 8492 | 0.4269 |
0.5002 | 194.0 | 8536 | 0.4292 |
0.5039 | 195.0 | 8580 | 0.4219 |
0.5107 | 196.0 | 8624 | 0.4191 |
0.5008 | 197.0 | 8668 | 0.4230 |
0.5024 | 198.0 | 8712 | 0.4226 |
0.4851 | 199.0 | 8756 | 0.4196 |
0.5026 | 200.0 | 8800 | 0.4164 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
Model tree for owanr/Sentiment-google-t5-v1_1-large-intra_model-dataset-frequency-human_annots_str
Base model
google/t5-v1_1-large