|
--- |
|
license: apache-2.0 |
|
base_model: google/t5-v1_1-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Sentiment-google-t5-v1_1-large-inter_model-sorted-model_annots_str |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Sentiment-google-t5-v1_1-large-inter_model-sorted-model_annots_str |
|
|
|
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 20.5922 | 1.0 | 44 | 24.6172 | |
|
| 16.3048 | 2.0 | 88 | 12.1742 | |
|
| 11.2971 | 3.0 | 132 | 10.1133 | |
|
| 9.1562 | 4.0 | 176 | 8.7959 | |
|
| 8.2587 | 5.0 | 220 | 8.5608 | |
|
| 8.1239 | 6.0 | 264 | 8.4644 | |
|
| 7.9281 | 7.0 | 308 | 8.3953 | |
|
| 7.9676 | 8.0 | 352 | 8.2317 | |
|
| 7.5012 | 9.0 | 396 | 7.7257 | |
|
| 7.1769 | 10.0 | 440 | 7.3715 | |
|
| 6.9303 | 11.0 | 484 | 7.1975 | |
|
| 6.8629 | 12.0 | 528 | 7.0684 | |
|
| 6.6057 | 13.0 | 572 | 6.9544 | |
|
| 0.9049 | 14.0 | 616 | 0.6979 | |
|
| 0.7327 | 15.0 | 660 | 0.6557 | |
|
| 0.712 | 16.0 | 704 | 0.6521 | |
|
| 0.7003 | 17.0 | 748 | 0.6520 | |
|
| 0.7145 | 18.0 | 792 | 0.6503 | |
|
| 0.6983 | 19.0 | 836 | 0.6504 | |
|
| 0.6943 | 20.0 | 880 | 0.6481 | |
|
| 0.6912 | 21.0 | 924 | 0.6479 | |
|
| 0.6945 | 22.0 | 968 | 0.6467 | |
|
| 0.6929 | 23.0 | 1012 | 0.6493 | |
|
| 0.6902 | 24.0 | 1056 | 0.6479 | |
|
| 0.6853 | 25.0 | 1100 | 0.6444 | |
|
| 0.6881 | 26.0 | 1144 | 0.6438 | |
|
| 0.6774 | 27.0 | 1188 | 0.6462 | |
|
| 0.6921 | 28.0 | 1232 | 0.6456 | |
|
| 0.6852 | 29.0 | 1276 | 0.6450 | |
|
| 0.6763 | 30.0 | 1320 | 0.6448 | |
|
| 0.6858 | 31.0 | 1364 | 0.6433 | |
|
| 0.6789 | 32.0 | 1408 | 0.6450 | |
|
| 0.6819 | 33.0 | 1452 | 0.6457 | |
|
| 0.6804 | 34.0 | 1496 | 0.6458 | |
|
| 0.6713 | 35.0 | 1540 | 0.6450 | |
|
| 0.6781 | 36.0 | 1584 | 0.6437 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|