|
--- |
|
license: apache-2.0 |
|
base_model: google/t5-v1_1-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: SChem5Labels-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SChem5Labels-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str |
|
|
|
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8911 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 19.7803 | 1.0 | 25 | 23.9207 | |
|
| 18.7939 | 2.0 | 50 | 19.6774 | |
|
| 17.9347 | 3.0 | 75 | 14.1935 | |
|
| 14.9562 | 4.0 | 100 | 11.5018 | |
|
| 12.9185 | 5.0 | 125 | 9.7946 | |
|
| 11.0104 | 6.0 | 150 | 9.0519 | |
|
| 10.1946 | 7.0 | 175 | 8.9336 | |
|
| 8.6775 | 8.0 | 200 | 8.6692 | |
|
| 8.2895 | 9.0 | 225 | 8.4222 | |
|
| 8.067 | 10.0 | 250 | 8.2689 | |
|
| 7.7922 | 11.0 | 275 | 8.1862 | |
|
| 7.702 | 12.0 | 300 | 8.0916 | |
|
| 7.5801 | 13.0 | 325 | 7.9765 | |
|
| 7.4381 | 14.0 | 350 | 7.7605 | |
|
| 7.4223 | 15.0 | 375 | 7.4846 | |
|
| 7.0379 | 16.0 | 400 | 7.3010 | |
|
| 6.9279 | 17.0 | 425 | 7.1606 | |
|
| 6.7912 | 18.0 | 450 | 7.0390 | |
|
| 6.7047 | 19.0 | 475 | 6.9686 | |
|
| 6.5986 | 20.0 | 500 | 6.9092 | |
|
| 6.5577 | 21.0 | 525 | 6.8427 | |
|
| 6.4589 | 22.0 | 550 | 6.7866 | |
|
| 6.3207 | 23.0 | 575 | 6.7021 | |
|
| 1.1695 | 24.0 | 600 | 0.7696 | |
|
| 0.7697 | 25.0 | 625 | 0.6522 | |
|
| 0.6978 | 26.0 | 650 | 0.6488 | |
|
| 0.6832 | 27.0 | 675 | 0.6470 | |
|
| 0.7033 | 28.0 | 700 | 0.6322 | |
|
| 0.692 | 29.0 | 725 | 0.6369 | |
|
| 0.6703 | 30.0 | 750 | 0.6372 | |
|
| 0.6781 | 31.0 | 775 | 0.6364 | |
|
| 0.677 | 32.0 | 800 | 0.6252 | |
|
| 0.6632 | 33.0 | 825 | 0.6301 | |
|
| 0.6684 | 34.0 | 850 | 0.6254 | |
|
| 0.6823 | 35.0 | 875 | 0.6312 | |
|
| 0.6665 | 36.0 | 900 | 0.6328 | |
|
| 0.6583 | 37.0 | 925 | 0.6256 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|