SChem5Labels-google-t5-v1_1-large-inter-dataset-frequency-model-pairwise-mse-cycle1

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9595
  • Loss: 23.6406
  • Losses: [0.9, 0.875, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.8181818181818182, 1.0, 1.0, 0.875, 1.0, 1.0, 0.8461538461538461, 0.9, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9444444444444444, 1.0, 0.9615384615384616, 0.7857142857142857, 0.9333333333333333, 1.0, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 0.8888888888888888, 0.9285714285714286, 1.0, 1.0, 1.0, 0.8888888888888888, 1.0, 1.0, 1.0, 1.0, 0.9375, 0.9565217391304348, 0.8823529411764706, 1.0, 0.9, 0.9130434782608695, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 1.0, 0.96, 1.0, 1.0, 1.0, 1.0, 0.9444444444444444, 0.8888888888888888, 1.0, 0.9615384615384616, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 0.7857142857142857, 0.8421052631578947, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9615384615384616, 1.0, 0.9523809523809523, 0.9230769230769231, 0.9130434782608695, 1.0, 1.0, 1.0, 0.8125, 1.0, 0.8823529411764706, 1.0, 1.0, 1.0, 0.8823529411764706, 1.0, 1.0, 1.0, 0.9090909090909091, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8461538461538461, 0.8333333333333334, 1.0, 0.88, 0.9230769230769231, 0.9375, 0.9166666666666666, 0.9285714285714286, 0.9, 1.0, 0.8846153846153846, 0.9166666666666666, 0.8666666666666667, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 0.9545454545454546, 1.0, 0.9333333333333333, 1.0, 0.9285714285714286, 0.85, 1.0, 1.0, 0.8846153846153846, 1.0, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 1.0, 0.9473684210526315, 1.0, 0.8666666666666667, 0.8666666666666667, 0.9615384615384616, 0.8666666666666667, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 0.9230769230769231, 0.9615384615384616, 1.0, 0.9, 1.0, 1.0, 1.0, 0.8333333333333334, 0.9333333333333333, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 0.9333333333333333, 1.0, 1.0, 0.8125, 1.0, 1.0, 1.0, 0.8125, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 0.9375, 1.0, 0.9090909090909091, 1.0, 0.9230769230769231, 0.9, 0.9615384615384616, 0.8461538461538461, 0.9285714285714286, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.88, 0.896551724137931, 1.0, 1.0, 1.0, 0.9047619047619048, 0.9166666666666666, 0.8823529411764706, 1.0, 1.0, 0.8181818181818182, 0.9285714285714286, 0.9166666666666666, 1.0, 1.0, 0.8888888888888888, 1.0, 1.0, 0.8888888888888888, 1.0, 0.92, 0.8333333333333334, 0.8823529411764706, 1.0, 0.9375, 0.8947368421052632, 0.875, 1.0, 0.9090909090909091, 0.9375, 1.0, 0.9565217391304348, 1.0, 1.0, 1.0, 0.8333333333333334, 0.9285714285714286, 1.0, 1.0, 0.9333333333333333, 1.0, 0.8888888888888888, 1.0, 0.9444444444444444, 0.8947368421052632, 1.0, 1.0, 0.8571428571428571, 0.9, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 0.8666666666666667, 1.0, 0.9615384615384616, 0.875, 1.0, 0.9285714285714286, 0.8947368421052632, 0.9473684210526315, 1.0, 0.9473684210526315, 1.0, 1.0, 0.8461538461538461, 0.8571428571428571, 1.0, 0.9615384615384616, 0.8888888888888888, 1.0, 1.0, 1.0, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 0.9411764705882353, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9285714285714286, 0.9545454545454546, 1.0, 1.0, 1.0, 0.9333333333333333, 0.9411764705882353, 0.8571428571428571, 1.0, 0.9166666666666666, 0.9166666666666666, 1.0, 0.9615384615384616, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8823529411764706, 0.8888888888888888, 1.0, 1.0, 0.875, 1.0, 0.9375, 0.88, 1.0, 1.0, 1.0, 1.0, 1.0, 0.92, 0.9090909090909091, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8571428571428571, 1.0, 0.9, 0.9411764705882353, 0.9285714285714286, 1.0, 0.8666666666666667, 0.8947368421052632, 1.0, 0.9615384615384616, 0.9375, 1.0, 1.0, 1.0, 1.0, 0.9090909090909091, 1.0, 0.9583333333333334, 0.8928571428571429, 1.0, 1.0, 1.0, 0.8333333333333334]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Train Loss Validation Loss Losses
19.9737 1.0 25 0.9595 24.0825 [0.9, 0.875, 0.8333333333333334, 1.0, 1.0, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 0.875, 1.0, 1.0, 0.8461538461538461, 0.9, 1.0, 0.9230769230769231, 1.0, 1.0, 1.0, 0.9444444444444444, 1.0, 0.9615384615384616, 0.7857142857142857, 0.9333333333333333, 1.0, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 0.8888888888888888, 0.9285714285714286, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9375, 0.9565217391304348, 0.8823529411764706, 1.0, 0.9, 0.9130434782608695, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 0.9230769230769231, 0.96, 1.0, 1.0, 1.0, 1.0, 0.9444444444444444, 0.8888888888888888, 1.0, 0.9615384615384616, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 0.7857142857142857, 0.8421052631578947, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9615384615384616, 1.0, 0.9523809523809523, 0.85, 0.9130434782608695, 0.9090909090909091, 1.0, 1.0, 0.8125, 1.0, 0.8695652173913043, 1.0, 1.0, 1.0, 0.8823529411764706, 1.0, 1.0, 1.0, 0.9090909090909091, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8461538461538461, 0.8333333333333334, 1.0, 0.88, 0.9230769230769231, 0.9375, 0.9166666666666666, 0.9285714285714286, 0.9, 0.9166666666666666, 1.0, 0.9166666666666666, 0.8666666666666667, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 0.9545454545454546, 1.0, 0.9333333333333333, 1.0, 0.9285714285714286, 0.85, 1.0, 1.0, 0.8846153846153846, 1.0, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 1.0, 0.9473684210526315, 1.0, 0.8666666666666667, 0.8461538461538461, 0.9615384615384616, 0.8666666666666667, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9230769230769231, 0.9615384615384616, 1.0, 0.9, 1.0, 1.0, 1.0, 0.8333333333333334, 0.9333333333333333, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 0.9333333333333333, 1.0, 1.0, 0.8125, 1.0, 1.0, 1.0, 0.8125, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 0.9375, 1.0, 0.9090909090909091, 1.0, 0.9230769230769231, 0.9615384615384616, 0.9615384615384616, 0.8461538461538461, 0.9285714285714286, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.88, 0.896551724137931, 1.0, 1.0, 1.0, 0.9047619047619048, 0.9166666666666666, 0.8823529411764706, 1.0, 1.0, 0.8181818181818182, 0.9285714285714286, 0.9166666666666666, 1.0, 1.0, 0.8888888888888888, 1.0, 1.0, 0.9375, 1.0, 0.92, 0.8333333333333334, 0.8823529411764706, 1.0, 0.9375, 0.8947368421052632, 0.875, 1.0, 0.9090909090909091, 0.9375, 1.0, 0.9565217391304348, 1.0, 1.0, 1.0, 0.8333333333333334, 1.0, 1.0, 1.0, 0.9333333333333333, 1.0, 1.0, 1.0, 0.9444444444444444, 0.8947368421052632, 1.0, 1.0, 0.8571428571428571, 0.9, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 0.8666666666666667, 1.0, 0.9615384615384616, 0.875, 1.0, 0.9285714285714286, 0.8947368421052632, 0.9473684210526315, 1.0, 0.9473684210526315, 1.0, 1.0, 0.8461538461538461, 0.8571428571428571, 1.0, 0.9615384615384616, 0.8888888888888888, 1.0, 0.9285714285714286, 1.0, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 0.9411764705882353, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9285714285714286, 0.9545454545454546, 1.0, 1.0, 1.0, 1.0, 0.9411764705882353, 0.8571428571428571, 1.0, 0.9166666666666666, 0.9166666666666666, 1.0, 0.9615384615384616, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8823529411764706, 0.8888888888888888, 1.0, 1.0, 0.875, 1.0, 0.9375, 0.88, 1.0, 0.8571428571428571, 1.0, 1.0, 1.0, 0.92, 0.9090909090909091, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8571428571428571, 1.0, 0.9, 0.9411764705882353, 0.9285714285714286, 1.0, 0.8666666666666667, 0.8947368421052632, 1.0, 0.9615384615384616, 0.9375, 1.0, 1.0, 1.0, 1.0, 0.9090909090909091, 1.0, 0.9583333333333334, 0.8928571428571429, 1.0, 1.0, 1.0, 0.8333333333333334]
19.8295 2.0 50 0.9596 23.9408 [0.9, 0.875, 0.8333333333333334, 1.0, 1.0, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 0.875, 1.0, 1.0, 0.8461538461538461, 0.9, 1.0, 0.9230769230769231, 1.0, 1.0, 1.0, 0.9444444444444444, 1.0, 0.9615384615384616, 0.7857142857142857, 0.9333333333333333, 1.0, 1.0, 1.0, 0.9411764705882353, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 0.8888888888888888, 0.9285714285714286, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9375, 0.9565217391304348, 0.8823529411764706, 1.0, 0.9, 0.9130434782608695, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 0.9230769230769231, 0.96, 1.0, 1.0, 1.0, 1.0, 0.9444444444444444, 0.8888888888888888, 1.0, 0.9615384615384616, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 0.7857142857142857, 0.8421052631578947, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9615384615384616, 1.0, 0.9523809523809523, 0.85, 0.9130434782608695, 0.9090909090909091, 1.0, 1.0, 0.8125, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8823529411764706, 1.0, 1.0, 1.0, 0.9090909090909091, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8461538461538461, 0.8333333333333334, 1.0, 0.88, 0.9230769230769231, 0.9375, 0.9166666666666666, 0.9285714285714286, 0.9, 1.0, 1.0, 0.9166666666666666, 0.8666666666666667, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 0.9545454545454546, 1.0, 0.9333333333333333, 1.0, 0.9285714285714286, 0.85, 1.0, 1.0, 0.8846153846153846, 1.0, 1.0, 0.9285714285714286, 1.0, 0.8235294117647058, 1.0, 1.0, 1.0, 1.0, 0.8666666666666667, 0.8461538461538461, 0.9615384615384616, 0.8666666666666667, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9230769230769231, 0.9615384615384616, 1.0, 0.9, 1.0, 1.0, 1.0, 0.8333333333333334, 0.9333333333333333, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 0.9333333333333333, 1.0, 1.0, 0.8125, 1.0, 1.0, 1.0, 0.8125, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 0.9375, 1.0, 0.9090909090909091, 1.0, 0.9230769230769231, 0.9, 0.9615384615384616, 0.8461538461538461, 0.9285714285714286, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.88, 0.896551724137931, 1.0, 1.0, 1.0, 0.9047619047619048, 0.9166666666666666, 0.8823529411764706, 1.0, 1.0, 0.8181818181818182, 0.9285714285714286, 0.9166666666666666, 1.0, 1.0, 0.8888888888888888, 1.0, 1.0, 1.0, 1.0, 0.92, 0.8333333333333334, 0.8823529411764706, 1.0, 0.9375, 0.8947368421052632, 0.875, 1.0, 0.9090909090909091, 0.9375, 1.0, 0.9565217391304348, 1.0, 1.0, 1.0, 0.8333333333333334, 1.0, 1.0, 1.0, 0.9333333333333333, 1.0, 1.0, 1.0, 0.9444444444444444, 0.8947368421052632, 1.0, 1.0, 0.8571428571428571, 0.9, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 0.8666666666666667, 1.0, 0.9615384615384616, 0.875, 1.0, 0.9285714285714286, 0.8947368421052632, 0.9473684210526315, 1.0, 0.9473684210526315, 1.0, 1.0, 0.8461538461538461, 0.8571428571428571, 1.0, 0.9615384615384616, 0.8888888888888888, 1.0, 0.9285714285714286, 1.0, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 0.9411764705882353, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9285714285714286, 0.9545454545454546, 1.0, 1.0, 1.0, 0.9333333333333333, 0.9411764705882353, 0.8571428571428571, 1.0, 0.9166666666666666, 0.9166666666666666, 1.0, 0.9615384615384616, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8823529411764706, 0.8888888888888888, 1.0, 1.0, 0.875, 1.0, 0.9411764705882353, 0.88, 1.0, 0.8571428571428571, 1.0, 1.0, 1.0, 0.92, 0.9090909090909091, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8571428571428571, 1.0, 0.9, 0.9411764705882353, 0.9285714285714286, 1.0, 0.8666666666666667, 0.8947368421052632, 1.0, 0.9615384615384616, 0.9375, 1.0, 1.0, 1.0, 1.0, 0.9090909090909091, 1.0, 0.9583333333333334, 0.8928571428571429, 1.0, 1.0, 1.0, 0.8333333333333334]
20.1206 3.0 75 0.9595 23.6406 [0.9, 0.875, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.8181818181818182, 1.0, 1.0, 0.875, 1.0, 1.0, 0.8461538461538461, 0.9, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9444444444444444, 1.0, 0.9615384615384616, 0.7857142857142857, 0.9333333333333333, 1.0, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 0.8888888888888888, 0.9285714285714286, 1.0, 1.0, 1.0, 0.8888888888888888, 1.0, 1.0, 1.0, 1.0, 0.9375, 0.9565217391304348, 0.8823529411764706, 1.0, 0.9, 0.9130434782608695, 1.0, 1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 1.0, 0.96, 1.0, 1.0, 1.0, 1.0, 0.9444444444444444, 0.8888888888888888, 1.0, 0.9615384615384616, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 0.7857142857142857, 0.8421052631578947, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9615384615384616, 1.0, 0.9523809523809523, 0.9230769230769231, 0.9130434782608695, 1.0, 1.0, 1.0, 0.8125, 1.0, 0.8823529411764706, 1.0, 1.0, 1.0, 0.8823529411764706, 1.0, 1.0, 1.0, 0.9090909090909091, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8461538461538461, 0.8333333333333334, 1.0, 0.88, 0.9230769230769231, 0.9375, 0.9166666666666666, 0.9285714285714286, 0.9, 1.0, 0.8846153846153846, 0.9166666666666666, 0.8666666666666667, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 0.9545454545454546, 1.0, 0.9333333333333333, 1.0, 0.9285714285714286, 0.85, 1.0, 1.0, 0.8846153846153846, 1.0, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 1.0, 0.9473684210526315, 1.0, 0.8666666666666667, 0.8666666666666667, 0.9615384615384616, 0.8666666666666667, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 0.9230769230769231, 0.9615384615384616, 1.0, 0.9, 1.0, 1.0, 1.0, 0.8333333333333334, 0.9333333333333333, 1.0, 1.0, 0.9090909090909091, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 0.9333333333333333, 1.0, 1.0, 0.8125, 1.0, 1.0, 1.0, 0.8125, 1.0, 0.9285714285714286, 1.0, 1.0, 1.0, 0.9375, 1.0, 0.9090909090909091, 1.0, 0.9230769230769231, 0.9, 0.9615384615384616, 0.8461538461538461, 0.9285714285714286, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.88, 0.896551724137931, 1.0, 1.0, 1.0, 0.9047619047619048, 0.9166666666666666, 0.8823529411764706, 1.0, 1.0, 0.8181818181818182, 0.9285714285714286, 0.9166666666666666, 1.0, 1.0, 0.8888888888888888, 1.0, 1.0, 0.8888888888888888, 1.0, 0.92, 0.8333333333333334, 0.8823529411764706, 1.0, 0.9375, 0.8947368421052632, 0.875, 1.0, 0.9090909090909091, 0.9375, 1.0, 0.9565217391304348, 1.0, 1.0, 1.0, 0.8333333333333334, 0.9285714285714286, 1.0, 1.0, 0.9333333333333333, 1.0, 0.8888888888888888, 1.0, 0.9444444444444444, 0.8947368421052632, 1.0, 1.0, 0.8571428571428571, 0.9, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 0.8666666666666667, 1.0, 0.9615384615384616, 0.875, 1.0, 0.9285714285714286, 0.8947368421052632, 0.9473684210526315, 1.0, 0.9473684210526315, 1.0, 1.0, 0.8461538461538461, 0.8571428571428571, 1.0, 0.9615384615384616, 0.8888888888888888, 1.0, 1.0, 1.0, 0.9230769230769231, 1.0, 1.0, 1.0, 1.0, 0.8666666666666667, 1.0, 1.0, 0.9411764705882353, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9285714285714286, 0.9285714285714286, 0.9545454545454546, 1.0, 1.0, 1.0, 0.9333333333333333, 0.9411764705882353, 0.8571428571428571, 1.0, 0.9166666666666666, 0.9166666666666666, 1.0, 0.9615384615384616, 1.0, 0.9166666666666666, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8823529411764706, 0.8888888888888888, 1.0, 1.0, 0.875, 1.0, 0.9375, 0.88, 1.0, 1.0, 1.0, 1.0, 1.0, 0.92, 0.9090909090909091, 1.0, 0.9615384615384616, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8571428571428571, 1.0, 0.9, 0.9411764705882353, 0.9285714285714286, 1.0, 0.8666666666666667, 0.8947368421052632, 1.0, 0.9615384615384616, 0.9375, 1.0, 1.0, 1.0, 1.0, 0.9090909090909091, 1.0, 0.9583333333333334, 0.8928571428571429, 1.0, 1.0, 1.0, 0.8333333333333334]

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SChem5Labels-google-t5-v1_1-large-inter-dataset-frequency-model-pairwise-mse-cycle1

Finetuned
(103)
this model