SBIC-google-t5-v1_1-large-intra_model-shuffle-model_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
6.8483 1.0 392 7.2176
5.8232 2.0 784 6.1652
0.842 3.0 1176 0.7614
0.7929 4.0 1568 0.7592
0.7685 5.0 1960 0.7490
0.8076 6.0 2352 0.7472
0.7376 7.0 2744 0.7534
0.7686 8.0 3136 0.7481
0.769 9.0 3528 0.7376
0.7466 10.0 3920 0.7362
0.7677 11.0 4312 0.7305
0.7435 12.0 4704 0.7307
0.773 13.0 5096 0.7294
0.751 14.0 5488 0.7281
0.7256 15.0 5880 0.7233
0.7545 16.0 6272 0.7235
0.7427 17.0 6664 0.7221
0.7851 18.0 7056 0.7219
0.758 19.0 7448 0.7217
0.7081 20.0 7840 0.7205
0.7336 21.0 8232 0.7190
0.7582 22.0 8624 0.7187
0.7475 23.0 9016 0.7186
0.7403 24.0 9408 0.7185
0.7151 25.0 9800 0.7182
0.7322 26.0 10192 0.7182
0.7483 27.0 10584 0.7182
0.7388 28.0 10976 0.7182
0.7496 29.0 11368 0.7182

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-intra_model-shuffle-model_annots_str

Finetuned
(103)
this model