SBIC-google-t5-v1_1-large-intra_model-frequency-model_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.0055 1.0 392 7.4350
5.8944 2.0 784 6.2034
0.5181 3.0 1176 0.4646
0.471 4.0 1568 0.4433
0.4494 5.0 1960 0.4368
0.4886 6.0 2352 0.4374
0.4155 7.0 2744 0.4516
0.4407 8.0 3136 0.4304
0.4527 9.0 3528 0.4213
0.428 10.0 3920 0.4149
0.4312 11.0 4312 0.4148
0.4167 12.0 4704 0.4128
0.4474 13.0 5096 0.4140
0.4238 14.0 5488 0.4100
0.423 15.0 5880 0.4096
0.4319 16.0 6272 0.4085
0.4267 17.0 6664 0.4067
0.4568 18.0 7056 0.4058
0.4426 19.0 7448 0.4059
0.3938 20.0 7840 0.4042
0.4136 21.0 8232 0.4053
0.421 22.0 8624 0.4040
0.4043 23.0 9016 0.4050
0.4159 24.0 9408 0.4046
0.401 25.0 9800 0.4040
0.4128 26.0 10192 0.4039
0.4123 27.0 10584 0.4039
0.4089 28.0 10976 0.4039
0.4346 29.0 11368 0.4039
0.437 30.0 11760 0.4039
0.4077 31.0 12152 0.4039

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-intra_model-frequency-model_annots_str

Finetuned
(103)
this model