SBIC-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
6.9506 1.0 392 7.3966
5.9108 2.0 784 6.2364
0.4499 3.0 1176 0.4162
0.4211 4.0 1568 0.4084
0.4066 5.0 1960 0.3981
0.4305 6.0 2352 0.4011
0.386 7.0 2744 0.4107
0.4028 8.0 3136 0.4002
0.4005 9.0 3528 0.3864
0.387 10.0 3920 0.3870
0.3903 11.0 4312 0.3876
0.3943 12.0 4704 0.3832
0.4032 13.0 5096 0.3837
0.3887 14.0 5488 0.3822
0.38 15.0 5880 0.3804
0.3982 16.0 6272 0.3781
0.3941 17.0 6664 0.3795
0.4079 18.0 7056 0.3783
0.3976 19.0 7448 0.3780
0.3705 20.0 7840 0.3764
0.3833 21.0 8232 0.3771
0.3835 22.0 8624 0.3752
0.3786 23.0 9016 0.3764
0.373 24.0 9408 0.3764
0.364 25.0 9800 0.3754
0.3807 26.0 10192 0.3756
0.3914 27.0 10584 0.3756

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str

Finetuned
(103)
this model