SBIC-google-t5-v1_1-large-intra_model-dataset-frequency-human_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.5892 1.0 392 8.1616
0.6051 2.0 784 0.4203
0.4096 3.0 1176 0.3717
0.4094 4.0 1568 0.3578
0.3419 5.0 1960 0.3266
0.3587 6.0 2352 0.3206
0.3431 7.0 2744 0.3057
0.355 8.0 3136 0.3103
0.3327 9.0 3528 0.3023
0.3089 10.0 3920 0.2948
0.2803 11.0 4312 0.3010
0.3204 12.0 4704 0.2951
0.3148 13.0 5096 0.2864
0.2896 14.0 5488 0.2830
0.3081 15.0 5880 0.2825
0.3012 16.0 6272 0.2808
0.2788 17.0 6664 0.2814
0.288 18.0 7056 0.2770
0.2648 19.0 7448 0.2697
0.3098 20.0 7840 0.2662
0.2592 21.0 8232 0.2651
0.2394 22.0 8624 0.2675
0.2716 23.0 9016 0.2617
0.2684 24.0 9408 0.2638
0.2729 25.0 9800 0.2627
0.2896 26.0 10192 0.2625
0.2652 27.0 10584 0.2625
0.2611 28.0 10976 0.2625

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-intra_model-dataset-frequency-human_annots_str

Finetuned
(103)
this model