SBIC-google-t5-v1_1-large-inter_model-sorted-human_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.6679 1.0 392 8.1733
3.1285 2.0 784 0.4610
0.4164 3.0 1176 0.3793
0.4073 4.0 1568 0.3457
0.3553 5.0 1960 0.3263
0.3684 6.0 2352 0.3160
0.3346 7.0 2744 0.3073
0.3482 8.0 3136 0.3045
0.3261 9.0 3528 0.3016
0.3255 10.0 3920 0.2960
0.2794 11.0 4312 0.2951
0.318 12.0 4704 0.2920
0.3072 13.0 5096 0.2875
0.2872 14.0 5488 0.2819
0.2912 15.0 5880 0.2774
0.2954 16.0 6272 0.2762
0.2792 17.0 6664 0.2775
0.2763 18.0 7056 0.2736
0.2573 19.0 7448 0.2715
0.3148 20.0 7840 0.2647
0.2599 21.0 8232 0.2621
0.2405 22.0 8624 0.2624
0.2785 23.0 9016 0.2609
0.2652 24.0 9408 0.2601
0.2977 25.0 9800 0.2594
0.2829 26.0 10192 0.2593
0.2757 27.0 10584 0.2593
0.264 28.0 10976 0.2593
0.2758 29.0 11368 0.2593

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-inter_model-sorted-human_annots_str

Finetuned
(103)
this model