SBIC-google-t5-v1_1-large-inter_model-shuffle-human_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.7989 1.0 392 8.3528
0.6988 2.0 784 0.5020
0.5046 3.0 1176 0.4843
0.5099 4.0 1568 0.4706
0.4526 5.0 1960 0.4291
0.469 6.0 2352 0.4223
0.4408 7.0 2744 0.4136
0.4763 8.0 3136 0.4142
0.446 9.0 3528 0.4116
0.4315 10.0 3920 0.4035
0.3821 11.0 4312 0.4077
0.4399 12.0 4704 0.4009
0.4285 13.0 5096 0.3962
0.3908 14.0 5488 0.3931
0.3887 15.0 5880 0.3922
0.398 16.0 6272 0.3862
0.3964 17.0 6664 0.3931
0.3939 18.0 7056 0.3892
0.372 19.0 7448 0.3824
0.4364 20.0 7840 0.3779
0.3722 21.0 8232 0.3760
0.343 22.0 8624 0.3804
0.3946 23.0 9016 0.3756
0.3899 24.0 9408 0.3756
0.4195 25.0 9800 0.3762
0.4072 26.0 10192 0.3758
0.379 27.0 10584 0.3758

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-inter_model-shuffle-human_annots_str

Finetuned
(103)
this model