SBIC-google-t5-v1_1-large-inter_model-frequency-human_annots_str

This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3635

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.7146 1.0 392 8.2917
0.5241 2.0 784 0.4371
0.4312 3.0 1176 0.4278
0.4359 4.0 1568 0.4084
0.3616 5.0 1960 0.3634
0.397 6.0 2352 0.3568
0.3647 7.0 2744 0.3387
0.3936 8.0 3136 0.3365
0.3614 9.0 3528 0.3341
0.3403 10.0 3920 0.3278
0.3048 11.0 4312 0.3227
0.347 12.0 4704 0.3218
0.337 13.0 5096 0.3136
0.3166 14.0 5488 0.3112
0.3021 15.0 5880 0.3119
0.3155 16.0 6272 0.3051
0.2965 17.0 6664 0.3054
0.3196 18.0 7056 0.2989
0.2857 19.0 7448 0.2964
0.3776 20.0 7840 0.2905
0.288 21.0 8232 0.2889
0.2632 22.0 8624 0.2911
0.3014 23.0 9016 0.2862
0.3015 24.0 9408 0.2869
0.3254 25.0 9800 0.2858
0.3178 26.0 10192 0.2860
0.2994 27.0 10584 0.2860
0.2893 28.0 10976 0.2860

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for owanr/SBIC-google-t5-v1_1-large-inter_model-frequency-human_annots_str

Finetuned
(103)
this model