metadata
license: mit
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: roberta-large-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9729032258064516
roberta-large-finetuned-clinc
This model is a fine-tuned version of roberta-large on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.1574
- Accuracy: 0.9729
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 239 | 0.8113 | 0.9035 |
No log | 2.0 | 478 | 0.2364 | 0.9548 |
1.7328 | 3.0 | 717 | 0.1760 | 0.9684 |
1.7328 | 4.0 | 956 | 0.1565 | 0.9723 |
0.0976 | 5.0 | 1195 | 0.1574 | 0.9729 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0
- Datasets 1.16.1
- Tokenizers 0.10.3