File size: 14,992 Bytes
5c43ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
license: other
license_name: qwen
language:
- th
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- openthaigpt
- qwen
---

# 🇹🇭 OpenThaiGPT 72b 1.5 Instruct
![OpenThaiGPT](https://1173516064-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FvvbWvIIe82Iv1yHaDBC5%2Fuploads%2Fb8eiMDaqiEQL6ahbAY0h%2Fimage.png?alt=media&token=6fce78fd-2cca-4c0a-9648-bd5518e644ce)  
[More Info](https://openthaigpt.aieat.or.th/)

🇹🇭 **OpenThaiGPT 72b Version 1.5** is an advanced 72-billion-parameter Thai language chat model based on Qwen v2.5 released on September 30, 2024. It has been specifically fine-tuned on over 2,000,000 Thai instruction pairs and is capable of answering Thai-specific domain questions.

## Highlights
- **State-of-the-art Thai language LLM**, achieving the highest average scores across various Thai language exams compared to other open-source Thai LLMs.
- **Multi-turn conversation support** for extended dialogues.
- **Retrieval Augmented Generation (RAG) compatibility** for enhanced response generation.
- **Impressive context handling**: Processes up to 131,072 tokens of input and generates up to 8,192 tokens, enabling detailed and complex interactions.

## Benchmark on [OpenThaiGPT Eval](https://huggingface.co/datasets/openthaigpt/openthaigpt_eval)
** Please take a look at ``openthaigpt/openthaigpt1.5-72b-instruct`` for this model's evaluation result.
| **Exam names**                 | **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | **meta-llama/Llama-3.1-70B-Instruct** | **Qwen/Qwen2.5-72B-Instruct** | **openthaigpt/openthaigpt1.5-72b-instruct** |
|:------------------------------:|:---------------------------------------------:|:-------------------------------------:|:-----------------------------:|:----------------------------------:|
| **01_a_level**                 | 59.17%                                        | 61.67%                                | 75.00%                        | 76.67%                             |
| **02_tgat**                    | 46.00%                                        | 40.00%                                | 48.00%                        | 46.00%                             |
| **03_tpat1**                   | 52.50%                                        | 50.00%                                | 55.00%                        | 55.00%                             |
| **04_investment_consult**      | 60.00%                                        | 52.00%                                | 80.00%                        | 72.00%                             |
| **05_facebook_beleble_th_200** | 87.50%                                        | 88.00%                                | 90.00%                        | 90.00%                             |
| **06_xcopa_th_200**            | 84.50%                                        | 85.50%                                | 90.00%                        | 90.50%                             |
| **07_xnli2.0_th_200**          | 62.50%                                        | 63.00%                                | 65.50%                        | 70.50%                             |
| **08_onet_m3_thai**            | 76.00%                                        | 56.00%                                | 76.00%                        | 84.00%                             |
| **09_onet_m3_social**          | 95.00%                                        | 95.00%                                | 90.00%                        | 95.00%                             |
| **10_onet_m3_math**            | 43.75%                                        | 25.00%                                | 37.50%                        | 37.50%                             |
| **11_onet_m3_science**         | 53.85%                                        | 61.54%                                | 65.38%                        | 73.08%                             |
| **12_onet_m3_english**         | 93.33%                                        | 93.33%                                | 96.67%                        | 96.67%                             |
| **13_onet_m6_thai**            | 55.38%                                        | 60.00%                                | 60.00%                        | 56.92%                             |
| **14_onet_m6_math**            | 41.18%                                        | 58.82%                                | 23.53%                        | 41.18%                             |
| **15_onet_m6_social**          | 67.27%                                        | 76.36%                                | 63.64%                        | 65.45%                             |
| **16_onet_m6_science**         | 50.00%                                        | 57.14%                                | 64.29%                        | 67.86%                             |
| **17_onet_m6_english**         | 73.08%                                        | 82.69%                                | 86.54%                        | 90.38%                             |
| **Micro Average**              | 69.97%                                        | 71.09%                                | 75.02%                        | <b style="color:blue">76.73%</b>                           |


Thai language multiple choice exams, Test on unseen test set, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval

(Updated on: 30 September 2024)

## Benchmark on [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam)

| Models                                                    | **Thai Exam (Acc)** |
|:----------------------------------------------------------:|:-------------------:|
| **api/claude-3-5-sonnet-20240620**                         | 69.2                |
| <b style="color:blue">**openthaigpt/openthaigpt1.5-72b-instruct***</b>                        | <b style="color:blue">64.07</b>               |
| **api/gpt-4o-2024-05-13**                                  | 63.89               |
| **hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4**   | 63.54               |
| **Qwen/Qwen2-72B-Instruct**                                | 58.23               |
| **meta-llama/Meta-Llama-3.1-70B-Instruct**                 | 58.23               |
| **scb10x/llama-3-typhoon-v1.5x-70b-instruct**              | 58.76               |
| **Qwen/Qwen2.5-14B-Instruct**                              | 57.35               |
| **api/gpt-4o-mini-2024-07-18**                             | 54.51               |
| <b style="color:blue">**openthaigpt/openthaigpt1.5-7b-instruct***</b>                         | <b style="color:blue">52.04</b>               |
| **SeaLLMs/SeaLLMs-v3-7B-Chat**                             | 51.33               |
| **openthaigpt/openthaigpt-1.0.0-70b-chat**                 | 50.09               |

<b style="color:blue">*</b>  Evaluated by OpenThaiGPT team using [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam).
## Licenses
* Built with Qwen
* Qwen License: Allow **Research** and **Commercial uses** but if your user base exceeds 100 million monthly active users, you need to negotiate a separate commercial license. Please see LICENSE file for more information.<br>

## Sponsors
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F5fcd9c426d942eaf4d1ebd30%2F3kjN6kuTzXDXQ6o1RFvHX.png%26quot%3B%3C%2Fspan%3E width="600px">

## Supports
- Official website: https://openthaigpt.aieat.or.th
- Facebook page: https://web.facebook.com/groups/openthaigpt
- A Discord server for discussion and support [here](https://discord.gg/rUTp6dfVUF)
- E-mail: [email protected]

## Prompt Format
Prompt format is based on ChatML.
```
<|im_start|>system\n{sytem_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n
```

### System prompt:
```
คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์
```

### Examples

#### Single Turn Conversation Example
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
```

#### Single Turn Conversation with Context (RAG) Example
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน\nกรุงเทพมหานครมีพื้นที่เท่าไร่<|im_end|>\n<|im_start|>assistant\n
```

#### Multi Turn Conversation Example

##### First turn
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
```

##### Second turn
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\n
```

##### Result
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\nชื่อเต็มของกรุงเทพมหานครคือ \"กรุงเทพมหานคร อมรรัตนโกสินทร์ มหินทรายุธยา มหาดิลกภพ นพรัตนราชธานีบูรีรมย์ อุดมราชนิเวศน์มหาสถาน อมรพิมานอวตารสถิต สักกะทัตติยวิษณุกรรมประสิทธิ์\"
```

## How to use

### Huggingface
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "openthaigpt/openthaigpt1.5-72b-instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "ประเทศไทยคืออะไร"
messages = [
    {"role": "system", "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

### vLLM

1. Install VLLM (https://github.com/vllm-project/vllm)
   
2. Run server
```bash
vllm serve openthaigpt/openthaigpt1.5-72b-instruct --tensor-parallel-size 4
```
* Note, change ``--tensor-parallel-size 4`` to the amount of available GPU cards.
  
3. Run inference (CURL example)
```bash
curl -X POST 'http://127.0.0.1:8000/v1/completions' \
-H 'Content-Type: application/json' \
-d '{
  "model": ".",
  "prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n",
  "max_tokens": 512,
  "temperature": 0.7,
  "top_p": 0.8,
  "top_k": 40,
  "stop": ["<|im_end|>"]
}'
```

### Processing Long Texts

The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.

For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
  ...,
  "rope_scaling": {
    "factor": 4.0,
    "original_max_position_embeddings": 32768,
    "type": "yarn"
  }
}
```

### GPU Memory Requirements
| **Number of Parameters** | **FP 16 bits** | **8 bits (Quantized)** | **4 bits (Quantized)** | **Example Graphic Card for 4 bits** |
|------------------|----------------|------------------------|------------------------|---------------------------------------------|
| **7b**           | 24 GB          | 12 GB                  | 6 GB                   | Nvidia RTX 4060 8GB                         |
| **13b**          | 48 GB          | 24 GB                  | 12 GB                  | Nvidia RTX 4070 16GB                        |
| **72b**          | 192 GB         | 96 GB                  | 48 GB                  | Nvidia RTX 4090 24GB x 2 cards              |

### Authors
* Sumeth Yuenyong ([email protected])
* Kobkrit Viriyayudhakorn ([email protected])
* Apivadee Piyatumrong ([email protected])
* Jillaphat Jaroenkantasima ([email protected])
* Thaweewat Rugsujarit ([email protected])
* Norapat Buppodom ([email protected])
* Koravich Sangkaew ([email protected])
* Peerawat Rojratchadakorn ([email protected])
* Surapon Nonesung ([email protected])
* Chanon Utupon ([email protected])
* Sadhis Wongprayoon ([email protected])
* Nucharee Thongthungwong ([email protected])
* Chawakorn Phiantham ([email protected])
* Patteera Triamamornwooth ([email protected])
* Nattarika Juntarapaoraya ([email protected])
* Kriangkrai Saetan ([email protected])
* Pitikorn Khlaisamniang ([email protected])

<i>Disclaimer: Provided responses are not guaranteed.</i>