kobkrit commited on
Commit
5c43ed6
·
verified ·
1 Parent(s): 4e0c670

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +231 -0
README.md ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: qwen
4
+ language:
5
+ - th
6
+ - en
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - openthaigpt
11
+ - qwen
12
+ ---
13
+
14
+ # 🇹🇭 OpenThaiGPT 72b 1.5 Instruct
15
+ ![OpenThaiGPT](https://1173516064-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FvvbWvIIe82Iv1yHaDBC5%2Fuploads%2Fb8eiMDaqiEQL6ahbAY0h%2Fimage.png?alt=media&token=6fce78fd-2cca-4c0a-9648-bd5518e644ce)
16
+ [More Info](https://openthaigpt.aieat.or.th/)
17
+
18
+ 🇹🇭 **OpenThaiGPT 72b Version 1.5** is an advanced 72-billion-parameter Thai language chat model based on Qwen v2.5 released on September 30, 2024. It has been specifically fine-tuned on over 2,000,000 Thai instruction pairs and is capable of answering Thai-specific domain questions.
19
+
20
+ ## Highlights
21
+ - **State-of-the-art Thai language LLM**, achieving the highest average scores across various Thai language exams compared to other open-source Thai LLMs.
22
+ - **Multi-turn conversation support** for extended dialogues.
23
+ - **Retrieval Augmented Generation (RAG) compatibility** for enhanced response generation.
24
+ - **Impressive context handling**: Processes up to 131,072 tokens of input and generates up to 8,192 tokens, enabling detailed and complex interactions.
25
+
26
+ ## Benchmark on [OpenThaiGPT Eval](https://huggingface.co/datasets/openthaigpt/openthaigpt_eval)
27
+ ** Please take a look at ``openthaigpt/openthaigpt1.5-72b-instruct`` for this model's evaluation result.
28
+ | **Exam names** | **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | **meta-llama/Llama-3.1-70B-Instruct** | **Qwen/Qwen2.5-72B-Instruct** | **openthaigpt/openthaigpt1.5-72b-instruct** |
29
+ |:------------------------------:|:---------------------------------------------:|:-------------------------------------:|:-----------------------------:|:----------------------------------:|
30
+ | **01_a_level** | 59.17% | 61.67% | 75.00% | 76.67% |
31
+ | **02_tgat** | 46.00% | 40.00% | 48.00% | 46.00% |
32
+ | **03_tpat1** | 52.50% | 50.00% | 55.00% | 55.00% |
33
+ | **04_investment_consult** | 60.00% | 52.00% | 80.00% | 72.00% |
34
+ | **05_facebook_beleble_th_200** | 87.50% | 88.00% | 90.00% | 90.00% |
35
+ | **06_xcopa_th_200** | 84.50% | 85.50% | 90.00% | 90.50% |
36
+ | **07_xnli2.0_th_200** | 62.50% | 63.00% | 65.50% | 70.50% |
37
+ | **08_onet_m3_thai** | 76.00% | 56.00% | 76.00% | 84.00% |
38
+ | **09_onet_m3_social** | 95.00% | 95.00% | 90.00% | 95.00% |
39
+ | **10_onet_m3_math** | 43.75% | 25.00% | 37.50% | 37.50% |
40
+ | **11_onet_m3_science** | 53.85% | 61.54% | 65.38% | 73.08% |
41
+ | **12_onet_m3_english** | 93.33% | 93.33% | 96.67% | 96.67% |
42
+ | **13_onet_m6_thai** | 55.38% | 60.00% | 60.00% | 56.92% |
43
+ | **14_onet_m6_math** | 41.18% | 58.82% | 23.53% | 41.18% |
44
+ | **15_onet_m6_social** | 67.27% | 76.36% | 63.64% | 65.45% |
45
+ | **16_onet_m6_science** | 50.00% | 57.14% | 64.29% | 67.86% |
46
+ | **17_onet_m6_english** | 73.08% | 82.69% | 86.54% | 90.38% |
47
+ | **Micro Average** | 69.97% | 71.09% | 75.02% | <b style="color:blue">76.73%</b> |
48
+
49
+
50
+ Thai language multiple choice exams, Test on unseen test set, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval
51
+
52
+ (Updated on: 30 September 2024)
53
+
54
+ ## Benchmark on [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam)
55
+
56
+ | Models | **Thai Exam (Acc)** |
57
+ |:----------------------------------------------------------:|:-------------------:|
58
+ | **api/claude-3-5-sonnet-20240620** | 69.2 |
59
+ | <b style="color:blue">**openthaigpt/openthaigpt1.5-72b-instruct***</b> | <b style="color:blue">64.07</b> |
60
+ | **api/gpt-4o-2024-05-13** | 63.89 |
61
+ | **hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4** | 63.54 |
62
+ | **Qwen/Qwen2-72B-Instruct** | 58.23 |
63
+ | **meta-llama/Meta-Llama-3.1-70B-Instruct** | 58.23 |
64
+ | **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | 58.76 |
65
+ | **Qwen/Qwen2.5-14B-Instruct** | 57.35 |
66
+ | **api/gpt-4o-mini-2024-07-18** | 54.51 |
67
+ | <b style="color:blue">**openthaigpt/openthaigpt1.5-7b-instruct***</b> | <b style="color:blue">52.04</b> |
68
+ | **SeaLLMs/SeaLLMs-v3-7B-Chat** | 51.33 |
69
+ | **openthaigpt/openthaigpt-1.0.0-70b-chat** | 50.09 |
70
+
71
+ <b style="color:blue">*</b> Evaluated by OpenThaiGPT team using [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam).
72
+ ## Licenses
73
+ * Built with Qwen
74
+ * Qwen License: Allow **Research** and **Commercial uses** but if your user base exceeds 100 million monthly active users, you need to negotiate a separate commercial license. Please see LICENSE file for more information.<br>
75
+
76
+ ## Sponsors
77
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/3kjN6kuTzXDXQ6o1RFvHX.png" width="600px">
78
+
79
+ ## Supports
80
+ - Official website: https://openthaigpt.aieat.or.th
81
+ - Facebook page: https://web.facebook.com/groups/openthaigpt
82
+ - A Discord server for discussion and support [here](https://discord.gg/rUTp6dfVUF)
83
+ - E-mail: [email protected]
84
+
85
+ ## Prompt Format
86
+ Prompt format is based on ChatML.
87
+ ```
88
+ <|im_start|>system\n{sytem_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n
89
+ ```
90
+
91
+ ### System prompt:
92
+ ```
93
+ คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์
94
+ ```
95
+
96
+ ### Examples
97
+
98
+ #### Single Turn Conversation Example
99
+ ```
100
+ <|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
101
+ ```
102
+
103
+ #### Single Turn Conversation with Context (RAG) Example
104
+ ```
105
+ <|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน\nกรุงเทพมหานครมีพื้นที่เท่าไร่<|im_end|>\n<|im_start|>assistant\n
106
+ ```
107
+
108
+ #### Multi Turn Conversation Example
109
+
110
+ ##### First turn
111
+ ```
112
+ <|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
113
+ ```
114
+
115
+ ##### Second turn
116
+ ```
117
+ <|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\n
118
+ ```
119
+
120
+ ##### Result
121
+ ```
122
+ <|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉล���ดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\nชื่อเต็มของกรุงเทพมหานครคือ \"กรุงเทพมหานคร อมรรัตนโกสินทร์ มหินทรายุธยา มหาดิลกภพ นพรัตนราชธานีบูรีรมย์ อุดมราชนิเวศน์มหาสถาน อมรพิมานอวตารสถิต สักกะทัตติยวิษณุกรรมประสิทธิ์\"
123
+ ```
124
+
125
+ ## How to use
126
+
127
+ ### Huggingface
128
+ ```python
129
+ from transformers import AutoModelForCausalLM, AutoTokenizer
130
+
131
+ model_name = "openthaigpt/openthaigpt1.5-72b-instruct"
132
+
133
+ model = AutoModelForCausalLM.from_pretrained(
134
+ model_name,
135
+ torch_dtype="auto",
136
+ device_map="auto"
137
+ )
138
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
139
+
140
+ prompt = "ประเทศไทยคืออะไร"
141
+ messages = [
142
+ {"role": "system", "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"},
143
+ {"role": "user", "content": prompt}
144
+ ]
145
+ text = tokenizer.apply_chat_template(
146
+ messages,
147
+ tokenize=False,
148
+ add_generation_prompt=True
149
+ )
150
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
151
+
152
+ generated_ids = model.generate(
153
+ **model_inputs,
154
+ max_new_tokens=512
155
+ )
156
+ generated_ids = [
157
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
158
+ ]
159
+
160
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
161
+ ```
162
+
163
+ ### vLLM
164
+
165
+ 1. Install VLLM (https://github.com/vllm-project/vllm)
166
+
167
+ 2. Run server
168
+ ```bash
169
+ vllm serve openthaigpt/openthaigpt1.5-72b-instruct --tensor-parallel-size 4
170
+ ```
171
+ * Note, change ``--tensor-parallel-size 4`` to the amount of available GPU cards.
172
+
173
+ 3. Run inference (CURL example)
174
+ ```bash
175
+ curl -X POST 'http://127.0.0.1:8000/v1/completions' \
176
+ -H 'Content-Type: application/json' \
177
+ -d '{
178
+ "model": ".",
179
+ "prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n",
180
+ "max_tokens": 512,
181
+ "temperature": 0.7,
182
+ "top_p": 0.8,
183
+ "top_k": 40,
184
+ "stop": ["<|im_end|>"]
185
+ }'
186
+ ```
187
+
188
+ ### Processing Long Texts
189
+
190
+ The current `config.json` is set for context length up to 32,768 tokens.
191
+ To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
192
+
193
+ For supported frameworks, you could add the following to `config.json` to enable YaRN:
194
+ ```json
195
+ {
196
+ ...,
197
+ "rope_scaling": {
198
+ "factor": 4.0,
199
+ "original_max_position_embeddings": 32768,
200
+ "type": "yarn"
201
+ }
202
+ }
203
+ ```
204
+
205
+ ### GPU Memory Requirements
206
+ | **Number of Parameters** | **FP 16 bits** | **8 bits (Quantized)** | **4 bits (Quantized)** | **Example Graphic Card for 4 bits** |
207
+ |------------------|----------------|------------------------|------------------------|---------------------------------------------|
208
+ | **7b** | 24 GB | 12 GB | 6 GB | Nvidia RTX 4060 8GB |
209
+ | **13b** | 48 GB | 24 GB | 12 GB | Nvidia RTX 4070 16GB |
210
+ | **72b** | 192 GB | 96 GB | 48 GB | Nvidia RTX 4090 24GB x 2 cards |
211
+
212
+ ### Authors
213
+ * Sumeth Yuenyong ([email protected])
214
+ * Kobkrit Viriyayudhakorn ([email protected])
215
+ * Apivadee Piyatumrong ([email protected])
216
+ * Jillaphat Jaroenkantasima ([email protected])
217
+ * Thaweewat Rugsujarit ([email protected])
218
+ * Norapat Buppodom ([email protected])
219
+ * Koravich Sangkaew ([email protected])
220
+ * Peerawat Rojratchadakorn ([email protected])
221
+ * Surapon Nonesung ([email protected])
222
+ * Chanon Utupon ([email protected])
223
+ * Sadhis Wongprayoon ([email protected])
224
+ * Nucharee Thongthungwong ([email protected])
225
+ * Chawakorn Phiantham ([email protected])
226
+ * Patteera Triamamornwooth ([email protected])
227
+ * Nattarika Juntarapaoraya ([email protected])
228
+ * Kriangkrai Saetan ([email protected])
229
+ * Pitikorn Khlaisamniang ([email protected])
230
+
231
+ <i>Disclaimer: Provided responses are not guaranteed.</i>