MiniCPM-Embedding

MiniCPM-Embedding 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本嵌入模型,有如下特点:

  • 出色的中文、英文检索能力。
  • 出色的中英跨语言检索能力。

MiniCPM-Embedding 基于 MiniCPM-2B-sft-bf16 训练,结构上采取双向注意力和 Weighted Mean Pooling [1]。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。

欢迎关注 RAG 套件系列:

MiniCPM-Embedding is a bilingual & cross-lingual text embedding model developed by ModelBest Inc. , THUNLP and NEUIR , featuring:

  • Exceptional Chinese and English retrieval capabilities.
  • Outstanding cross-lingual retrieval capabilities between Chinese and English.

MiniCPM-Embedding is trained based on MiniCPM-2B-sft-bf16 and incorporates bidirectional attention and Weighted Mean Pooling [1] in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.

We also invite you to explore the RAG toolkit series:

[1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904.

模型信息 Model Information

  • 模型大小:2.4B

  • 嵌入维度:2304

  • 最大输入token数:512

  • Model Size: 2.4B

  • Embedding Dimension: 2304

  • Max Input Tokens: 512

使用方法 Usage

输入格式 Input Format

本模型支持 query 侧指令,格式如下:

MiniCPM-Embedding supports query-side instructions in the following format:

Instruction: {{ instruction }} Query: {{ query }}

例如:

For example:

Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么?
Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast.

也可以不提供指令,即采取如下格式:

MiniCPM-Embedding also works in instruction-free mode in the following format:

Query: {{ query }}

我们在 BEIR 与 C-MTEB/Retrieval 上测试时使用的指令见 instructions.json,其他测试不使用指令。文档侧直接输入文档原文。

When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in instructions.json. For other evaluations, we do not use instructions. On the document side, we directly use the bare document as the input.

环境要求 Requirements

transformers==4.37.2
flash-attn>2.3.5

示例脚本 Demo

Huggingface Transformers


from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F

model_name = "openbmb/MiniCPM-Embedding"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
model.eval()

# 由于在 `model.forward` 中缩放了最终隐层表示,此处的 mean pooling 实际上起到了 weighted mean pooling 的作用
# As we scale hidden states in `model.forward`, mean pooling here actually works as weighted mean pooling
def mean_pooling(hidden, attention_mask):
    s = torch.sum(hidden * attention_mask.unsqueeze(-1).float(), dim=1)
    d = attention_mask.sum(dim=1, keepdim=True).float()
    reps = s / d
    return reps

@torch.no_grad()
def encode(input_texts):
    batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt', return_attention_mask=True).to("cuda")
    
    outputs = model(**batch_dict)
    attention_mask = batch_dict["attention_mask"]
    hidden = outputs.last_hidden_state

    reps = mean_pooling(hidden, attention_mask)   
    embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()
    return embeddings

queries = ["中国的首都是哪里?"]
passages = ["beijing", "shanghai"]


INSTRUCTION = "Query: "
queries = [INSTRUCTION + query for query in queries]

embeddings_query = encode(queries)
embeddings_doc = encode(passages)

scores = (embeddings_query @ embeddings_doc.T)
print(scores.tolist())  # [[0.3535913825035095, 0.18596848845481873]]

Sentence Transformers

import torch
from sentence_transformers import SentenceTransformer

model_name = "openbmb/MiniCPM-Embedding"
model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={"attn_implementation": "flash_attention_2", "torch_dtype": torch.float16})

queries = ["中国的首都是哪里?"]
passages = ["beijing", "shanghai"]

INSTRUCTION = "Query: "

embeddings_query = model.encode(queries, prompt=INSTRUCTION)
embeddings_doc = model.encode(passages)

scores = (embeddings_query @ embeddings_doc.T)
print(scores.tolist())  # [[0.35365450382232666, 0.18592746555805206]]

实验结果 Evaluation Results

中文与英文检索结果 CN/EN Retrieval Results

模型 Model C-MTEB/Retrieval (NDCG@10) BEIR (NDCG@10)
bge-large-zh-v1.5 70.46 -
gte-large-zh 72.49 -
Zhihui_LLM_Embedding 76.74
bge-large-en-v1.5 - 54.29
gte-en-large-v1.5 - 57.91
NV-Retriever-v1 - 60.9
bge-en-icl - 62.16
NV-Embed-v2 - 62.65
me5-large 63.66 51.43
bge-m3(Dense) 65.43 48.82
gte-multilingual-base(Dense) 71.95 51.08
gte-Qwen2-1.5B-instruct 71.86 58.29
gte-Qwen2-7B-instruct 76.03 60.25
bge-multilingual-gemma2 73.73 59.24
MiniCPM-Embedding 76.76 58.56
MiniCPM-Embedding+MiniCPM-Reranker 77.08 61.61

中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results

模型 Model MKQA En-Zh_CN (Recall@20) NeuCLIR22 (NDCG@10) NeuCLIR23 (NDCG@10)
me5-large 44.3 9.01 25.33
bge-m3(Dense) 66.4 30.49 41.09
gte-multilingual-base(Dense) 68.2 39.46 45.86
gte-Qwen2-1.5B-instruct 68.52 49.11 45.05
gte-Qwen2-7B-instruct 68.27 49.14 49.6
MiniCPM-Embedding 72.95 52.65 49.95
MiniCPM-Embedding+MiniCPM-Reranker 74.33 53.21 54.12

许可证 License

  • 本仓库中代码依照 Apache-2.0 协议开源。
  • MiniCPM-Embedding 模型权重的使用则需要遵循 MiniCPM 模型协议
  • MiniCPM-Embedding 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写此问卷
  • The code in this repo is released under the Apache-2.0 License.
  • The usage of MiniCPM-Embedding model weights must strictly follow MiniCPM Model License.md.
  • The models and weights of MiniCPM-Embedding are completely free for academic research. After filling out a "questionnaire" for registration, MiniCPM-Embedding weights are also available for free commercial use.
Downloads last month
1,029
Safetensors
Model size
2.72B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for openbmb/MiniCPM-Embedding

Finetuned
(9)
this model

Spaces using openbmb/MiniCPM-Embedding 2

Collections including openbmb/MiniCPM-Embedding

Evaluation results