Xenova's picture
Xenova HF staff
[Automated] Update base model metadata
53cc64a verified
---
base_model: pyannote/segmentation-3.0
library_name: transformers.js
license: mit
---
https://huggingface.co/pyannote/segmentation-3.0 with ONNX weights to be compatible with Transformers.js.
## Transformers.js (v3) usage
```js
import { AutoProcessor, AutoModelForAudioFrameClassification, read_audio } from '@xenova/transformers';
// Load model and processor
const model_id = 'onnx-community/pyannote-segmentation-3.0';
const model = await AutoModelForAudioFrameClassification.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);
// Read and preprocess audio
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/mlk.wav';
const audio = await read_audio(url, processor.feature_extractor.config.sampling_rate);
const inputs = await processor(audio);
// Run model with inputs
const { logits } = await model(inputs);
// {
// logits: Tensor {
// dims: [ 1, 767, 7 ], // [batch_size, num_frames, num_classes]
// type: 'float32',
// data: Float32Array(5369) [ ... ],
// size: 5369
// }
// }
const result = processor.post_process_speaker_diarization(logits, audio.length);
// [
// [
// { id: 0, start: 0, end: 1.0512535626298245, confidence: 0.8220156481664611 },
// { id: 2, start: 1.0512535626298245, end: 2.3398869619825127, confidence: 0.9008811707860472 },
// ...
// ]
// ]
// Display result
console.table(result[0], ['start', 'end', 'id', 'confidence']);
// β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
// β”‚ (index) β”‚ start β”‚ end β”‚ id β”‚ confidence β”‚
// β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
// β”‚ 0 β”‚ 0 β”‚ 1.0512535626298245 β”‚ 0 β”‚ 0.8220156481664611 β”‚
// β”‚ 1 β”‚ 1.0512535626298245 β”‚ 2.3398869619825127 β”‚ 2 β”‚ 0.9008811707860472 β”‚
// β”‚ 2 β”‚ 2.3398869619825127 β”‚ 3.5946089560890773 β”‚ 0 β”‚ 0.7521651315796233 β”‚
// β”‚ 3 β”‚ 3.5946089560890773 β”‚ 4.578039708226655 β”‚ 2 β”‚ 0.8491978128022479 β”‚
// β”‚ 4 β”‚ 4.578039708226655 β”‚ 4.594995410849717 β”‚ 0 β”‚ 0.2935352600416393 β”‚
// β”‚ 5 β”‚ 4.594995410849717 β”‚ 6.121008646925269 β”‚ 3 β”‚ 0.6788051309866024 β”‚
// β”‚ 6 β”‚ 6.121008646925269 β”‚ 6.256654267909762 β”‚ 0 β”‚ 0.37125512393851134 β”‚
// β”‚ 7 β”‚ 6.256654267909762 β”‚ 8.630452635138397 β”‚ 2 β”‚ 0.7467035186353542 β”‚
// β”‚ 8 β”‚ 8.630452635138397 β”‚ 10.088643060721703 β”‚ 0 β”‚ 0.7689364814666032 β”‚
// β”‚ 9 β”‚ 10.088643060721703 β”‚ 12.58113134631177 β”‚ 2 β”‚ 0.9123324509131324 β”‚
// β”‚ 10 β”‚ 12.58113134631177 β”‚ 13.005023911888312 β”‚ 0 β”‚ 0.4828358177572041 β”‚
// β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```
## Torch → ONNX conversion code:
```py
# pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip
import torch
from pyannote.audio import Model
model = Model.from_pretrained(
"pyannote/segmentation-3.0",
use_auth_token="hf_...", # <-- Set your HF token here
).eval()
dummy_input = torch.zeros(2, 1, 160000)
torch.onnx.export(
model,
dummy_input,
'model.onnx',
do_constant_folding=True,
input_names=["input_values"],
output_names=["logits"],
dynamic_axes={
"input_values": {0: "batch_size", 1: "num_channels", 2: "num_samples"},
"logits": {0: "batch_size", 1: "num_frames"},
},
)
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [πŸ€— Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).