base_model: microsoft/Florence-2-base-ft
library_name: transformers.js
license: mit
pipeline_tag: image-text-to-text
tags:
- vision
- text-generation
- text2text-generation
- image-to-text
https://huggingface.co/microsoft/Florence-2-base-ft with ONNX weights to be compatible with Transformers.js.
Usage (Transformers.js)
NOTE: Florence-2 support is experimental and requires you to install Transformers.js v3 from source.
If you haven't already, you can install the Transformers.js JavaScript library from GitHub using:
npm install xenova/transformers.js#v3
Example: Perform image captioning with onnx-community/Florence-2-base-ft
.
import {
Florence2ForConditionalGeneration,
AutoProcessor,
AutoTokenizer,
RawImage,
} from '@xenova/transformers';
// Load model, processor, and tokenizer
const model_id = 'onnx-community/Florence-2-base-ft';
const model = await Florence2ForConditionalGeneration.from_pretrained(model_id, { dtype: 'fp32' });
const processor = await AutoProcessor.from_pretrained(model_id);
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
// Load image and prepare vision inputs
const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg';
const image = await RawImage.fromURL(url);
const vision_inputs = await processor(image);
// Specify task and prepare text inputs
const task = '<MORE_DETAILED_CAPTION>';
const prompts = processor.construct_prompts(task);
const text_inputs = tokenizer(prompts);
// Generate text
const generated_ids = await model.generate({
...text_inputs,
...vision_inputs,
max_new_tokens: 100,
});
// Decode generated text
const generated_text = tokenizer.batch_decode(generated_ids, { skip_special_tokens: false })[0];
// Post-process the generated text
const result = processor.post_process_generation(generated_text, task, image.size);
console.log(result);
// { '<MORE_DETAILED_CAPTION>': 'A green car is parked in front of a tan building. There is a brown door on the building behind the car. There are two windows on the front of the building. ' }
We also released an online demo, which you can try yourself: https://huggingface.co/spaces/Xenova/florence2-webgpu
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx
).