wav2vec2-large-xlsr-53-german-cv13-restart

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - DE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1121
  • Wer: 0.1075
  • Cer: 0.0286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.1679 1.0 4348 0.0459 0.1617 0.1707
0.1597 2.0 8697 0.0479 0.1592 0.1717
0.1364 3.0 13045 0.0425 0.1524 0.1563
0.1311 4.0 17394 0.0406 0.1446 0.1515
0.1152 5.0 21742 0.0397 0.1431 0.1470
0.107 6.0 26091 0.0369 0.1382 0.1377
0.0957 7.0 30439 0.0373 0.1343 0.1372
0.0924 8.0 34788 0.0355 0.1335 0.1315
0.0835 9.0 39136 0.0384 0.1328 0.1380
0.0775 10.0 43485 0.0328 0.1232 0.1229
0.0752 11.0 47833 0.0309 0.1220 0.1174
0.0691 12.0 52182 0.0327 0.1182 0.1197
0.0689 13.0 56530 0.0307 0.1163 0.1150
0.0653 14.0 60879 0.0304 0.1141 0.1126
0.0717 15.0 65220 0.1121 0.1075 0.0286

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
8
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for oliverguhr/wav2vec2-large-xlsr-53-german-cv13

Finetuned
(223)
this model

Evaluation results