distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1143
- Accuracy: {'accuracy': 0.885}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3907 | {'accuracy': 0.87} |
0.4307 | 2.0 | 500 | 0.4413 | {'accuracy': 0.886} |
0.4307 | 3.0 | 750 | 0.7302 | {'accuracy': 0.879} |
0.1513 | 4.0 | 1000 | 0.7659 | {'accuracy': 0.882} |
0.1513 | 5.0 | 1250 | 0.7540 | {'accuracy': 0.877} |
0.0662 | 6.0 | 1500 | 0.8800 | {'accuracy': 0.886} |
0.0662 | 7.0 | 1750 | 1.0128 | {'accuracy': 0.885} |
0.0086 | 8.0 | 2000 | 1.0446 | {'accuracy': 0.884} |
0.0086 | 9.0 | 2250 | 1.1049 | {'accuracy': 0.884} |
0.0026 | 10.0 | 2500 | 1.1143 | {'accuracy': 0.885} |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 1
Model tree for oliver-chen/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased