distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1143
  • Accuracy: {'accuracy': 0.885}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3907 {'accuracy': 0.87}
0.4307 2.0 500 0.4413 {'accuracy': 0.886}
0.4307 3.0 750 0.7302 {'accuracy': 0.879}
0.1513 4.0 1000 0.7659 {'accuracy': 0.882}
0.1513 5.0 1250 0.7540 {'accuracy': 0.877}
0.0662 6.0 1500 0.8800 {'accuracy': 0.886}
0.0662 7.0 1750 1.0128 {'accuracy': 0.885}
0.0086 8.0 2000 1.0446 {'accuracy': 0.884}
0.0086 9.0 2250 1.1049 {'accuracy': 0.884}
0.0026 10.0 2500 1.1143 {'accuracy': 0.885}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for oliver-chen/distilbert-base-uncased-lora-text-classification

Adapter
(221)
this model