Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/pythia-1b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 46b02610ea8315fe_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/46b02610ea8315fe_train_data.json
  type:
    field_instruction: title
    field_output: abstract
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: oldiday/ebb2e60d-f7a8-4416-b2d9-8840974cdd5b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/46b02610ea8315fe_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 278d0bdf-ef37-4e1a-b8d6-38e8b7df7d83
wandb_project: Gradients-On-Six
wandb_run: your_name
wandb_runid: 278d0bdf-ef37-4e1a-b8d6-38e8b7df7d83
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

ebb2e60d-f7a8-4416-b2d9-8840974cdd5b

This model is a fine-tuned version of EleutherAI/pythia-1b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6238

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0064 1 2.7490
10.9698 0.0580 9 2.7323
10.9147 0.1159 18 2.6874
10.6611 0.1739 27 2.6637
10.7418 0.2319 36 2.6484
10.8259 0.2899 45 2.6389
10.5555 0.3478 54 2.6319
10.6802 0.4058 63 2.6284
10.6667 0.4638 72 2.6256
10.5628 0.5217 81 2.6245
10.5312 0.5797 90 2.6238
10.5265 0.6377 99 2.6238

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for oldiday/ebb2e60d-f7a8-4416-b2d9-8840974cdd5b

Adapter
(161)
this model