See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 671bf7d7f65c8829_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/671bf7d7f65c8829_train_data.json
type:
field_input: context
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: oldiday/d391f0f6-47f2-4dd6-84af-47a82ecb7081
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/671bf7d7f65c8829_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 220c7fa7-511e-49b5-b7f9-597d52fdf8c9
wandb_project: Gradients-On-Six
wandb_run: your_name
wandb_runid: 220c7fa7-511e-49b5-b7f9-597d52fdf8c9
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
d391f0f6-47f2-4dd6-84af-47a82ecb7081
This model is a fine-tuned version of unsloth/Qwen2.5-Math-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.5950
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0187 | 1 | 8.7073 |
8.507 | 0.1682 | 9 | 8.5290 |
8.0721 | 0.3364 | 18 | 8.1007 |
7.5164 | 0.5047 | 27 | 7.7524 |
7.1878 | 0.6729 | 36 | 7.3953 |
6.8321 | 0.8411 | 45 | 7.0922 |
7.7444 | 1.0093 | 54 | 6.8720 |
6.3705 | 1.1776 | 63 | 6.7320 |
6.8949 | 1.3458 | 72 | 6.6550 |
6.4256 | 1.5140 | 81 | 6.6145 |
6.5797 | 1.6822 | 90 | 6.5984 |
6.7291 | 1.8505 | 99 | 6.5950 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for oldiday/d391f0f6-47f2-4dd6-84af-47a82ecb7081
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Math-1.5B
Finetuned
Qwen/Qwen2.5-Math-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Math-1.5B-Instruct