base / README.md
okhytrov's picture
End of training
6880ae2 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: |-
      DeiT-base-DatasetDict({
          train: Dataset({
              features: ['img', 'fine_label', 'coarse_label'],
              num_rows: 50000
          })
          test: Dataset({
              features: ['img', 'fine_label', 'coarse_label'],
              num_rows: 10000
          })
          validation: Dataset({
              features: ['img', 'fine_label', 'coarse_label'],
              num_rows: 10000
          })
      })
    results: []

DeiT-base-DatasetDict({

train: Dataset({
    features: ['img', 'fine_label', 'coarse_label'],
    num_rows: 50000
})
test: Dataset({
    features: ['img', 'fine_label', 'coarse_label'],
    num_rows: 10000
})
validation: Dataset({
    features: ['img', 'fine_label', 'coarse_label'],
    num_rows: 10000
})

})

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the cifar100 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3054
  • Accuracy: 0.906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 1
  • seed: 777
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.1232 1.0 782 0.8416 0.5390
0.9017 2.0 1564 0.8699 0.4365
0.7565 3.0 2346 0.8858 0.3678
0.706 4.0 3128 0.8952 0.3446
0.6353 5.0 3910 0.8986 0.3331
0.5384 6.0 4692 0.9001 0.3223
0.5004 7.0 5474 0.9018 0.3249
0.4672 8.0 6256 0.904 0.3113
0.4526 9.0 7038 0.9054 0.3081
0.4289 10.0 7820 0.906 0.3054

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2