Model Overview
Description
This family of models performs vision-language and text-only tasks including optical character recognition, multimodal reasoning, localization, common sense reasoning, world knowledge utilization, and coding.
License/Terms of Use
Creative Commons Attribution: Non-Commercial 4.0 International
Model Details
Today (September 17th, 2024), we introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training.
In this repo, we are open-sourcing NVLM-1.0-D-72B (decoder-only architecture), the decoder-only model weights and code for the community.
Reference(s)
Paper β Inference Code (HF) β Training Code (Coming soon) β Website
Benchmark Results
We train our model with legacy Megatron-LM and adapt the codebase to Huggingface for model hosting, reproducibility, and inference. We observe numerical differences between the Megatron and Huggingface codebases, which are within the expected range of variation. We provide the results from both the Huggingface codebase and the Megatron codebase for reproducibility and comparison with other models.
Results (as of September 17th, 2024) in the multimodal benchmarks are as follows:
Vision-language Benchmarks
Benchmark | MMMU (val / test) | MathVista | OCRBench | AI2D | ChartQA | DocVQA | TextVQA | RealWorldQA | VQAv2 |
---|---|---|---|---|---|---|---|---|---|
NVLM-D 1.0 72B (Huggingface) | 58.7 / 54.9 | 65.2 | 852 | 94.2 | 86.0 | 92.6 | 82.6 | 69.5 | 85.4 |
NVLM-D 1.0 72B (Megatron) | 59.7 / 54.6 | 65.2 | 853 | 94.2 | 86.0 | 92.6 | 82.1 | 69.7 | 85.4 |
Llama 3.2 90B | 60.3 / - | 57.3 | - | 92.3 | 85.5 | 90.1 | - | - | 78.1 |
Llama 3-V 70B | 60.6 / - | - | - | 93.0 | 83.2 | 92.2 | 83.4 | - | 79.1 |
Llama 3-V 405B | 64.5 / - | - | - | 94.1 | 85.8 | 92.6 | 84.8 | - | 80.2 |
InternVL2-Llama3-76B | 55.2 / - | 65.5 | 839 | 94.8 | 88.4 | 94.1 | 84.4 | 72.2 | - |
GPT-4V | 56.8 / 55.7 | 49.9 | 645 | 78.2 | 78.5 | 88.4 | 78.0 | 61.4 | 77.2 |
GPT-4o | 69.1 / - | 63.8 | 736 | 94.2 | 85.7 | 92.8 | - | - | - |
Claude 3.5 Sonnet | 68.3 / - | 67.7 | 788 | 94.7 | 90.8 | 95.2 | - | - | - |
Gemini 1.5 Pro (Aug 2024) | 62.2 / - | 63.9 | 754 | 94.4 | 87.2 | 93.1 | 78.7 | 70.4 | 80.2 |
Text-only Benchmarks
Tasks | Backbone LLM | MMLU | GSM8K | MATH | HumanEval | Avg. Accuracy |
---|---|---|---|---|---|---|
Proprietary | ||||||
GPT-4.0 | N/A | 88.7 | - | 76.6 | 90.2 | - |
Gemini Pro 1.5 (Aug 2024) | N/A | 85.9 | 90.8 | 67.7 | 84.1 | 82.1 |
Claude 3.5 Sonnet | N/A | 88.7 | 96.4 | 71.1 | 92.0 | 87.0 |
Open LLM | ||||||
(a) Nous-Hermes-2-Yi-34B | N/A | 75.5 | 78.6 | 21.8 | 43.3 | 54.8 |
(b) Qwen-72B-Instruct | N/A | 82.3 | 91.1 | 59.7 | 86.0 | 79.8 |
(c) Llama-3-70B-Instruct | N/A | 82.0 | 93.0 | 51.0 | 81.7 | 76.6 |
(d) Llama-3.1-70B-Instruct | N/A | 83.6 | 95.1 | 68.0 | 80.5 | 81.8 |
(e) Llama-3.1-405B-Instruct | N/A | 87.3 | 96.8 | 73.8 | 89.0 | 86.7 |
Open Multimodal LLM | ||||||
VILA-1.5 40B | (a) | 73.3 | 67.5 | 16.8 | 34.1 | π₯Ά 47.9 (-6.9) |
LLaVA-OneVision 72B | (b) | 80.6 | 89.9 | 49.2 | 74.4 | π₯Ά 73.5 (-6.3) |
InternVL-2-Llama3-76B | (c) | 78.5 | 87.1 | 42.5 | 71.3 | π₯Ά 69.9 (-6.7) |
*Llama 3-V 70B | (d) | 83.6 | 95.1 | 68.0 | 80.5 | π 81.8 (0) |
*Llama 3-V 405B | (e) | 87.3 | 96.8 | 73.8 | 89.0 | π 86.7 (0) |
NVLM-D 1.0 72B (Megatron) | (b) | 82.0 | 92.9 | 73.1 | 88.4 | π₯³ 84.1 (+4.3) |
NVLM-D 1.0 72B (Huggingface) | (b) | 81.7 | 93.2 | 73.1 | 89.0 | π₯³ 84.3 (+4.5) |
Model Architectures
Network Architecture: Decoder-Only Transformer
Input
Input Type(s): Text, Image
Input Format(s): String, Pillow Library-Supported Formats
Input Dimensions: One-Dimensional (1D), Two Dimensional (2D)
Other Properties Related to Input: Maximum Token Length = 128K Tokens
Output
Output Type(s): Text
Output Format: String
Model Output: 1D
Other Properties Related to Output: None
How to use
When converting Megatron checkpoint to Huggingface, we adapt InternVL codebase to support model loading and multi-GPU inference in HF.
We also use the tokenizer from Qwen2.5-72B-Instruct when adapting the tokenizer to Huggingface, as it contains extra special tokens for vision tasks, e.g., <|vision_pad|>
.
We train NVLM-1.0-D-72B based on the Qwen2-72B-Instruct text-only model and InternViT-6B-448px-V1-5 ViT model with our large-scale high-quality multimodal dataset.
For training code, please refer to Megatron-LM (Coming soon).
Prepare the environment
We provide a docker build file in the Dockerfile for reproduction.
The docker image is based on nvcr.io/nvidia/pytorch:23.09-py3
.
Note: We observe that different transformer versions / CUDA versions / docker versions can lead to slight benchmark number differences. We recommend using the Dockerfile above for precise reproduction.
Model loading
import torch
from transformers import AutoModel
path = "nvidia/NVLM-D-72B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=False,
trust_remote_code=True).eval()
Multiple GPUs
The model can be loaded on multiple GPUs as follows:
import torch
import math
from transformers import AutoModel
def split_model():
device_map = {}
world_size = torch.cuda.device_count()
num_layers = 80
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
path = "nvidia/NVLM-D-72B"
device_map = split_model()
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=False,
trust_remote_code=True,
device_map=device_map).eval()
Inference
import torch
from transformers import AutoTokenizer, AutoModel
import math
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
def split_model():
device_map = {}
world_size = torch.cuda.device_count()
num_layers = 80
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
path = "nvidia/NVLM-D-72B"
device_map = split_model()
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=False,
trust_remote_code=True,
device_map=device_map).eval()
print(model)
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=False)
# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation
pixel_values = load_image('path/to/your/example/image.jpg', max_num=6).to(
torch.bfloat16)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
Software Integration
Runtime Engine(s)
- PyTorch
Supported Hardware Microarchitecture Compatibility:
- NVIDIA Hopper
[Preferred/Supported] Operating System(s):
- Linux
Inference
Engine: PyTorch
Test Hardware:
- H100
Model Version(s)
- v1.0-D (NVLM-D)
Training, Testing, and Evaluation Datasets
Pre-Training Dataset
Link
Data Collection Method by dataset
- Hybrid: Automated, Human, Synthetic, Unknown
Labeling Method by dataset
- Hybrid: Automated, Human, Synthetic, Unknown
Properties
- Trained on image captions, image-text pairs, natural images, charts, documents, scene descriptions, and mathematical reasoning.
Supervised Fine-Tuning Dataset
Link
Data Collection Method by dataset
- Hybrid: Automated, Human, Synthetic, Unknown
Labeling Method by dataset
- Hybrid: Automated, Human, Synthetic, Unknown
Properties
- Trained on image captions; general knowledge; image-text pairs; natural images; charts; diagrams; documents; scene descriptions; science diagrams, lessons, textbook data, and question-answer pairs; visual instruction tuning; and mathematical reasoning.
Evaluation Dataset
Link
Data collection method by dataset
- Human
Labeling method by dataset
- Human
Properties
- Evaluated on general knowledge, visual answering, chart understanding, table, optical character recognition, and mathematical reasoning.
Correspondence to
Wenliang Dai* ([email protected]), Nayeon Lee* ([email protected]), Boxin Wang* ([email protected]), Zhuolin Yang* ([email protected]), Wei Ping* ([email protected])
*Equal contribution
Citation
@article{nvlm2024, title={NVLM: Open Frontier-Class Multimodal LLMs}, author={Dai, Wenliang and Lee, Nayeon and Wang, Boxin and Yang, Zhuolin and Liu, Zihan and Barker, Jon and Rintamaki, Tuomas and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei}, journal={arXiv preprint}, year={2024}}
Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report security vulnerabilities or NVIDIA AI Concerns here.
- Downloads last month
- 7,996