Model

The base version of e5-v2 finetunned on an annotated subset of C4. This model provides generic embedding for sentiment analysis. Embeddings can be used out of the box or fine-tuned on specific datasets.

Blog post: https://www.numind.ai/blog/creating-task-specific-foundation-models-with-gpt-4

Usage

Below is an example to encode text and get embedding.

import torch
from transformers import AutoTokenizer, AutoModel


model = AutoModel.from_pretrained("Numind/e5-base-sentiment_analysis")
tokenizer = AutoTokenizer.from_pretrained("Numind/e5-base-sentiment_analysis")
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)

size = 256
text = "This movie is amazing"

encoding = tokenizer(
    text,
    truncation=True, 
    padding='max_length', 
    max_length= size,
)

emb = model(
      torch.reshape(torch.tensor(encoding.input_ids),(1,len(encoding.input_ids))).to(device),output_hidden_states=True
).hidden_states[-1].cpu().detach()

embText = torch.mean(emb,axis = 1)
Downloads last month
36
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train numind/NuSentiment

Collection including numind/NuSentiment