You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

HOW TO USE

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import torch from jinja2 import Template

1. Define the chat template using Jinja2 syntax

chat_template = """ <|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023

{% if System %} {{ System }} {% endif %} {% if Tools %} When you receive a tool call response, use the output to format an answer to the original user question.

You are a helpful assistant with tool calling capabilities. {% endif %}<|eot_id|> {% for message in Messages %} {% set last = loop.last %} {% if message.role == "user" %} <|start_header_id|>user<|end_header_id|> {% if Tools and last %} Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.

Respond in the format {"name": function_name, "parameters": {"arg1": "value1", "arg2": "value2"}}. Do not use variables.

{% for tool in Tools %} {{ tool }} {% endfor %} {{ message.content }}<|eot_id|> {% else %} {{ message.content }}<|eot_id|> {% endif %} {% if last %} <|start_header_id|>assistant<|end_header_id|> {% endif %} {% elif message.role == "assistant" %} <|start_header_id|>assistant<|end_header_id|> {% if message.ToolCalls %} {% for call in message.ToolCalls %} {"name": "{{ call.Function.Name }}", "parameters": {{ call.Function.Arguments }}} {% endfor %} {% else %} {{ message.content }} {% endif %} {% if not last %} <|eot_id|> {% endif %} {% elif message.role == "tool" %} <|start_header_id|>ipython<|end_header_id|>

{{ message.content }}<|eot_id|>{% if last %}<|start_header_id|>assistant<|end_header_id|>

    {% endif %}
{% endif %}

{% endfor %} """

2. Initialize the Jinja2 template

template = Template(chat_template)

3. Define conversation messages and tools (if any)

messages = [ { "role": "system", "content": """

YOU ARE AN INGREDIENT DATA ANALYZER, A LEADING AUTHORITY IN EVALUATING AND CLASSIFYING RISKS ASSOCIATED WITH INGREDIENTS BASED ON CANCER, ALLERGEN, AND ENDOCRINE DISRUPTOR SCORES. YOUR TASK IS TO PROCESS THE PROVIDED INGREDIENT DATA AND OUTPUT A FULL, COMPLETE, AND WELL-STRUCTURED JSON OBJECT.

###INSTRUCTIONS###

  1. ANALYZE THE INGREDIENT DATA:

    • IDENTIFY any potential risks associated with the ingredient.
    • CALCULATE or CLASSIFY the cancer, allergen, and endocrine disruptor scores based on the input data.
  2. ASSIGN A COLOR CODE:

    • DETERMINE the appropriate risk color for the ingredient:
      • G (Green): Low or no risk.
      • Y (Yellow): Moderate risk.
      • R (Red): High risk.
  3. OUTPUT RESULTS IN JSON FORMAT:

    • ENSURE the JSON object includes:
      • cancer_score: Numerical or categorical representation of cancer risk.
      • allergen_score: Numerical or categorical representation of allergen risk.
      • endocrine_disruptor_score: Numerical or categorical representation of endocrine disruptor risk.
      • risk_color: The assigned color based on the evaluated scores.
  4. PROVIDE COMPLETE INFORMATION:

    • NEVER leave any field empty or incomplete.
    • IF any score cannot be determined, PROVIDE an explicit reason or placeholder in the JSON (e.g., "unknown" or "not applicable").

###JSON STRUCTURE FORMAT###

{
  "cancer_score": <True/False/Unknown>,
  "allergen_score": <True/False/Unknown>,
  "endocrine_disruptor_score": <True/False/Unknown>,
  "risk_color": "<G/Y/R>",
  "description":"",
}
"""
    },
    # Few-shot example 1
     

    {
        "role": "user",
        "content": """   


"""
    },
]

# Define any tools if applicable (empty in this case)
tools = []  # Populate this list if you have any tool definitions

# 4. Prepare the context for the template
context = {
    "System": messages[0]["content"],
    "Tools": tools,  # Add tool definitions if any
    "Messages": messages[1:],  # Exclude the system message
}

# 5. Render the template with the context
formatted_input = template.render(context)

# 6. Load the model and tokenizer
model_id = "/home/marl/Music/kungul-instruct"  # Replace with your actual model ID
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Add any special tokens used in the template to the tokenizer
special_tokens = ["<|start_header_id|>", "<|end_header_id|>", "<|eot_id|>"]
tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})

# Load the model with the updated tokenizer
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="cuda",
)

# Resize the token embeddings to accommodate new special tokens
model.resize_token_embeddings(len(tokenizer))

# 7. Initialize the pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

# 8. Generate the response
response = pipe(
    formatted_input,
    max_new_tokens=256,
    temperature=0.01,  # Adjust temperature as needed
    top_p=0.95,       # Adjust top_p as needed
    do_sample=True,   # Enable sampling for more diverse outputs
)

# 9. Extract and print the generated text
generated_text = response[0]["generated_text"]

# Optionally, extract only the assistant's reply after the last <|start_header_id|>assistant<|end_header_id|>
import re

# Regex pattern to find the assistant's response
pattern = r"<\|start_header_id\|>assistant<\|end_header_id\|>(.*?)$"
match = re.search(pattern, generated_text, re.DOTALL)
if match:
    assistant_reply = match.group(1).strip()
    print("Assistant's Reply:")
    print(assistant_reply)
else:
    print("Full Generated Text:")
    print(generated_text)
Downloads last month
0
Safetensors
Model size
3.21B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for noxneural/kungullama-v0.9-3B

Finetuned
(214)
this model