nomnoos37's picture
nomnoos37/stt-turbo-1226-v1.4
085df1a verified
metadata
library_name: peft
language:
  - ko
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Small ko
    results: []

Whisper Small ko

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8642 0.1449 10 1.5475
0.8061 0.2899 20 1.4627
0.6409 0.4348 30 1.2193
0.3296 0.5797 40 0.8200
0.178 0.7246 50 0.7032
0.1336 0.8696 60 0.6138
0.1064 1.0145 70 0.5193
0.0846 1.1594 80 0.4691
0.0728 1.3043 90 0.4360
0.0681 1.4493 100 0.4071
0.0566 1.5942 110 0.3891
0.0613 1.7391 120 0.3695
0.0441 1.8841 130 0.3587
0.0469 2.0290 140 0.3461
0.0426 2.1739 150 0.3373
0.0383 2.3188 160 0.3249
0.037 2.4638 170 0.3150
0.0516 2.6087 180 0.2967
0.0403 2.7536 190 0.2888
0.045 2.8986 200 0.2782
0.0365 3.0435 210 0.2668
0.0309 3.1884 220 0.2598
0.0341 3.3333 230 0.2542
0.0289 3.4783 240 0.2487
0.0364 3.6232 250 0.2417
0.0353 3.7681 260 0.2372
0.0312 3.9130 270 0.2293
0.0317 4.0580 280 0.2263
0.029 4.2029 290 0.2254
0.0348 4.3478 300 0.2168
0.0299 4.4928 310 0.2101
0.0327 4.6377 320 0.2085
0.0252 4.7826 330 0.2071
0.0246 4.9275 340 0.2020
0.0219 5.0725 350 0.1990
0.0234 5.2174 360 0.1997
0.0269 5.3623 370 0.1969
0.0262 5.5072 380 0.1961
0.0293 5.6522 390 0.1920
0.0247 5.7971 400 0.1891
0.0273 5.9420 410 0.1869
0.0205 6.0870 420 0.1866
0.0168 6.2319 430 0.1860
0.0261 6.3768 440 0.1851
0.0254 6.5217 450 0.1839
0.0258 6.6667 460 0.1830
0.0242 6.8116 470 0.1825
0.0259 6.9565 480 0.1818
0.0234 7.1014 490 0.1813
0.0194 7.2464 500 0.1812

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0