Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
Whisper Small ko
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:
- Loss: 0.3680
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.597 | 0.0153 | 10 | 1.5896 |
0.6039 | 0.0306 | 20 | 1.5751 |
0.5982 | 0.0459 | 30 | 1.5476 |
0.5547 | 0.0612 | 40 | 1.4984 |
0.5346 | 0.0765 | 50 | 1.4090 |
0.4456 | 0.0917 | 60 | 1.2126 |
0.3208 | 0.1070 | 70 | 0.9587 |
0.2289 | 0.1223 | 80 | 0.9004 |
0.1958 | 0.1376 | 90 | 0.8680 |
0.1832 | 0.1529 | 100 | 0.8425 |
0.1618 | 0.1682 | 110 | 0.8191 |
0.1649 | 0.1835 | 120 | 0.7813 |
0.1416 | 0.1988 | 130 | 0.7523 |
0.142 | 0.2141 | 140 | 0.7328 |
0.1386 | 0.2294 | 150 | 0.7280 |
0.1362 | 0.2446 | 160 | 0.7054 |
0.1293 | 0.2599 | 170 | 0.6869 |
0.1313 | 0.2752 | 180 | 0.6788 |
0.1356 | 0.2905 | 190 | 0.6736 |
0.1377 | 0.3058 | 200 | 0.6692 |
0.1332 | 0.3211 | 210 | 0.6521 |
0.1237 | 0.3364 | 220 | 0.6593 |
0.1153 | 0.3517 | 230 | 0.6551 |
0.1236 | 0.3670 | 240 | 0.6427 |
0.1084 | 0.3823 | 250 | 0.6343 |
0.1292 | 0.3976 | 260 | 0.6168 |
0.1182 | 0.4128 | 270 | 0.6030 |
0.1142 | 0.4281 | 280 | 0.6027 |
0.1198 | 0.4434 | 290 | 0.6147 |
0.1111 | 0.4587 | 300 | 0.6141 |
0.1014 | 0.4740 | 310 | 0.6062 |
0.1115 | 0.4893 | 320 | 0.5983 |
0.1082 | 0.5046 | 330 | 0.6016 |
0.1024 | 0.5199 | 340 | 0.5988 |
0.0968 | 0.5352 | 350 | 0.5907 |
0.1052 | 0.5505 | 360 | 0.5890 |
0.1038 | 0.5657 | 370 | 0.5807 |
0.1116 | 0.5810 | 380 | 0.5696 |
0.1005 | 0.5963 | 390 | 0.5662 |
0.1215 | 0.6116 | 400 | 0.5562 |
0.0969 | 0.6269 | 410 | 0.5628 |
0.106 | 0.6422 | 420 | 0.5664 |
0.0949 | 0.6575 | 430 | 0.5553 |
0.0952 | 0.6728 | 440 | 0.5636 |
0.1101 | 0.6881 | 450 | 0.5532 |
0.1125 | 0.7034 | 460 | 0.5539 |
0.1052 | 0.7187 | 470 | 0.5584 |
0.1041 | 0.7339 | 480 | 0.5624 |
0.1024 | 0.7492 | 490 | 0.5480 |
0.1006 | 0.7645 | 500 | 0.5385 |
0.0957 | 0.7798 | 510 | 0.5456 |
0.1042 | 0.7951 | 520 | 0.5415 |
0.1067 | 0.8104 | 530 | 0.5426 |
0.1047 | 0.8257 | 540 | 0.5346 |
0.1072 | 0.8410 | 550 | 0.5315 |
0.098 | 0.8563 | 560 | 0.5237 |
0.1091 | 0.8716 | 570 | 0.5197 |
0.096 | 0.8869 | 580 | 0.5240 |
0.0895 | 0.9021 | 590 | 0.5254 |
0.0975 | 0.9174 | 600 | 0.5307 |
0.0998 | 0.9327 | 610 | 0.5235 |
0.0972 | 0.9480 | 620 | 0.5197 |
0.0967 | 0.9633 | 630 | 0.5041 |
0.0968 | 0.9786 | 640 | 0.5032 |
0.0981 | 0.9939 | 650 | 0.4923 |
0.083 | 1.0092 | 660 | 0.4843 |
0.0885 | 1.0245 | 670 | 0.4822 |
0.1085 | 1.0398 | 680 | 0.4807 |
0.0889 | 1.0550 | 690 | 0.4807 |
0.0897 | 1.0703 | 700 | 0.4757 |
0.0941 | 1.0856 | 710 | 0.4670 |
0.092 | 1.1009 | 720 | 0.4679 |
0.0901 | 1.1162 | 730 | 0.4637 |
0.1065 | 1.1315 | 740 | 0.4724 |
0.0807 | 1.1468 | 750 | 0.4709 |
0.0893 | 1.1621 | 760 | 0.4728 |
0.104 | 1.1774 | 770 | 0.4781 |
0.0847 | 1.1927 | 780 | 0.4764 |
0.0981 | 1.2080 | 790 | 0.4723 |
0.0871 | 1.2232 | 800 | 0.4650 |
0.0933 | 1.2385 | 810 | 0.4613 |
0.0855 | 1.2538 | 820 | 0.4582 |
0.0877 | 1.2691 | 830 | 0.4634 |
0.0887 | 1.2844 | 840 | 0.4703 |
0.091 | 1.2997 | 850 | 0.4668 |
0.0902 | 1.3150 | 860 | 0.4621 |
0.0876 | 1.3303 | 870 | 0.4485 |
0.0808 | 1.3456 | 880 | 0.4487 |
0.0811 | 1.3609 | 890 | 0.4614 |
0.0828 | 1.3761 | 900 | 0.4684 |
0.0895 | 1.3914 | 910 | 0.4599 |
0.0852 | 1.4067 | 920 | 0.4549 |
0.0927 | 1.4220 | 930 | 0.4458 |
0.0879 | 1.4373 | 940 | 0.4458 |
0.1015 | 1.4526 | 950 | 0.4390 |
0.0919 | 1.4679 | 960 | 0.4417 |
0.0817 | 1.4832 | 970 | 0.4380 |
0.0833 | 1.4985 | 980 | 0.4360 |
0.093 | 1.5138 | 990 | 0.4375 |
0.0897 | 1.5291 | 1000 | 0.4353 |
0.0818 | 1.5443 | 1010 | 0.4348 |
0.0891 | 1.5596 | 1020 | 0.4243 |
0.0942 | 1.5749 | 1030 | 0.4263 |
0.0852 | 1.5902 | 1040 | 0.4286 |
0.0815 | 1.6055 | 1050 | 0.4272 |
0.081 | 1.6208 | 1060 | 0.4189 |
0.0848 | 1.6361 | 1070 | 0.4159 |
0.0897 | 1.6514 | 1080 | 0.4139 |
0.0845 | 1.6667 | 1090 | 0.4101 |
0.0815 | 1.6820 | 1100 | 0.4091 |
0.0789 | 1.6972 | 1110 | 0.4083 |
0.0995 | 1.7125 | 1120 | 0.4109 |
0.0827 | 1.7278 | 1130 | 0.4105 |
0.085 | 1.7431 | 1140 | 0.4105 |
0.0905 | 1.7584 | 1150 | 0.4116 |
0.0844 | 1.7737 | 1160 | 0.4087 |
0.0898 | 1.7890 | 1170 | 0.4080 |
0.0789 | 1.8043 | 1180 | 0.4106 |
0.0864 | 1.8196 | 1190 | 0.4126 |
0.0715 | 1.8349 | 1200 | 0.4133 |
0.0934 | 1.8502 | 1210 | 0.4086 |
0.081 | 1.8654 | 1220 | 0.4057 |
0.0829 | 1.8807 | 1230 | 0.4040 |
0.0795 | 1.8960 | 1240 | 0.4050 |
0.082 | 1.9113 | 1250 | 0.4068 |
0.0831 | 1.9266 | 1260 | 0.4021 |
0.094 | 1.9419 | 1270 | 0.4007 |
0.0786 | 1.9572 | 1280 | 0.3993 |
0.0837 | 1.9725 | 1290 | 0.3973 |
0.0773 | 1.9878 | 1300 | 0.3987 |
0.0993 | 2.0031 | 1310 | 0.4047 |
0.0851 | 2.0183 | 1320 | 0.4009 |
0.0826 | 2.0336 | 1330 | 0.3985 |
0.0766 | 2.0489 | 1340 | 0.3947 |
0.0778 | 2.0642 | 1350 | 0.3930 |
0.0729 | 2.0795 | 1360 | 0.3951 |
0.0769 | 2.0948 | 1370 | 0.3961 |
0.0802 | 2.1101 | 1380 | 0.3949 |
0.0787 | 2.1254 | 1390 | 0.3959 |
0.0773 | 2.1407 | 1400 | 0.3940 |
0.0729 | 2.1560 | 1410 | 0.3945 |
0.0795 | 2.1713 | 1420 | 0.3962 |
0.083 | 2.1865 | 1430 | 0.3942 |
0.0796 | 2.2018 | 1440 | 0.3894 |
0.0715 | 2.2171 | 1450 | 0.3886 |
0.0771 | 2.2324 | 1460 | 0.3878 |
0.0846 | 2.2477 | 1470 | 0.3856 |
0.0723 | 2.2630 | 1480 | 0.3849 |
0.0931 | 2.2783 | 1490 | 0.3836 |
0.0898 | 2.2936 | 1500 | 0.3799 |
0.0748 | 2.3089 | 1510 | 0.3800 |
0.0852 | 2.3242 | 1520 | 0.3811 |
0.0701 | 2.3394 | 1530 | 0.3814 |
0.085 | 2.3547 | 1540 | 0.3814 |
0.076 | 2.3700 | 1550 | 0.3784 |
0.0758 | 2.3853 | 1560 | 0.3785 |
0.0886 | 2.4006 | 1570 | 0.3792 |
0.0733 | 2.4159 | 1580 | 0.3823 |
0.0809 | 2.4312 | 1590 | 0.3809 |
0.0788 | 2.4465 | 1600 | 0.3768 |
0.0761 | 2.4618 | 1610 | 0.3762 |
0.0757 | 2.4771 | 1620 | 0.3768 |
0.0774 | 2.4924 | 1630 | 0.3764 |
0.0721 | 2.5076 | 1640 | 0.3759 |
0.066 | 2.5229 | 1650 | 0.3763 |
0.075 | 2.5382 | 1660 | 0.3765 |
0.0833 | 2.5535 | 1670 | 0.3765 |
0.0779 | 2.5688 | 1680 | 0.3761 |
0.0802 | 2.5841 | 1690 | 0.3761 |
0.0772 | 2.5994 | 1700 | 0.3755 |
0.0739 | 2.6147 | 1710 | 0.3743 |
0.0773 | 2.6300 | 1720 | 0.3736 |
0.0793 | 2.6453 | 1730 | 0.3719 |
0.0775 | 2.6606 | 1740 | 0.3718 |
0.08 | 2.6758 | 1750 | 0.3724 |
0.0751 | 2.6911 | 1760 | 0.3731 |
0.0696 | 2.7064 | 1770 | 0.3726 |
0.0792 | 2.7217 | 1780 | 0.3706 |
0.069 | 2.7370 | 1790 | 0.3705 |
0.076 | 2.7523 | 1800 | 0.3713 |
0.0724 | 2.7676 | 1810 | 0.3719 |
0.0767 | 2.7829 | 1820 | 0.3719 |
0.079 | 2.7982 | 1830 | 0.3713 |
0.0761 | 2.8135 | 1840 | 0.3714 |
0.0722 | 2.8287 | 1850 | 0.3711 |
0.0904 | 2.8440 | 1860 | 0.3703 |
0.0808 | 2.8593 | 1870 | 0.3695 |
0.0718 | 2.8746 | 1880 | 0.3691 |
0.0789 | 2.8899 | 1890 | 0.3690 |
0.089 | 2.9052 | 1900 | 0.3687 |
0.0751 | 2.9205 | 1910 | 0.3689 |
0.0856 | 2.9358 | 1920 | 0.3690 |
0.0812 | 2.9511 | 1930 | 0.3689 |
0.077 | 2.9664 | 1940 | 0.3687 |
0.0764 | 2.9817 | 1950 | 0.3685 |
0.0747 | 2.9969 | 1960 | 0.3682 |
0.065 | 3.0122 | 1970 | 0.3682 |
0.0796 | 3.0275 | 1980 | 0.3681 |
0.0767 | 3.0428 | 1990 | 0.3681 |
0.0792 | 3.0581 | 2000 | 0.3680 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.