Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
Whisper Small ko
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:
- Loss: 0.0820
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9031 | 0.0813 | 10 | 1.5890 |
0.919 | 0.1626 | 20 | 1.5737 |
0.8656 | 0.2439 | 30 | 1.5449 |
0.8302 | 0.3252 | 40 | 1.4914 |
0.7353 | 0.4065 | 50 | 1.3898 |
0.5881 | 0.4878 | 60 | 1.1693 |
0.35 | 0.5691 | 70 | 0.9472 |
0.2397 | 0.6504 | 80 | 0.8734 |
0.2272 | 0.7317 | 90 | 0.8072 |
0.1772 | 0.8130 | 100 | 0.7618 |
0.1426 | 0.8943 | 110 | 0.7191 |
0.1226 | 0.9756 | 120 | 0.6701 |
0.1022 | 1.0569 | 130 | 0.6356 |
0.0866 | 1.1382 | 140 | 0.6036 |
0.0796 | 1.2195 | 150 | 0.5758 |
0.0886 | 1.3008 | 160 | 0.5459 |
0.0648 | 1.3821 | 170 | 0.5246 |
0.0716 | 1.4634 | 180 | 0.5128 |
0.0571 | 1.5447 | 190 | 0.5002 |
0.0861 | 1.6260 | 200 | 0.4762 |
0.0594 | 1.7073 | 210 | 0.4489 |
0.0494 | 1.7886 | 220 | 0.4278 |
0.0414 | 1.8699 | 230 | 0.4159 |
0.0457 | 1.9512 | 240 | 0.4106 |
0.0408 | 2.0325 | 250 | 0.4002 |
0.0469 | 2.1138 | 260 | 0.3972 |
0.0588 | 2.1951 | 270 | 0.3853 |
0.0397 | 2.2764 | 280 | 0.3816 |
0.0459 | 2.3577 | 290 | 0.3806 |
0.0394 | 2.4390 | 300 | 0.3644 |
0.0376 | 2.5203 | 310 | 0.3562 |
0.0376 | 2.6016 | 320 | 0.3461 |
0.0321 | 2.6829 | 330 | 0.3337 |
0.037 | 2.7642 | 340 | 0.3301 |
0.0377 | 2.8455 | 350 | 0.3240 |
0.0245 | 2.9268 | 360 | 0.3185 |
0.0361 | 3.0081 | 370 | 0.3179 |
0.0279 | 3.0894 | 380 | 0.3130 |
0.0338 | 3.1707 | 390 | 0.3066 |
0.0344 | 3.2520 | 400 | 0.3010 |
0.0279 | 3.3333 | 410 | 0.2959 |
0.0243 | 3.4146 | 420 | 0.2886 |
0.0346 | 3.4959 | 430 | 0.2899 |
0.0251 | 3.5772 | 440 | 0.2851 |
0.0475 | 3.6585 | 450 | 0.2755 |
0.0272 | 3.7398 | 460 | 0.2714 |
0.0242 | 3.8211 | 470 | 0.2719 |
0.0238 | 3.9024 | 480 | 0.2707 |
0.0235 | 3.9837 | 490 | 0.2688 |
0.0293 | 4.0650 | 500 | 0.2677 |
0.0211 | 4.1463 | 510 | 0.2641 |
0.0205 | 4.2276 | 520 | 0.2601 |
0.0228 | 4.3089 | 530 | 0.2553 |
0.0216 | 4.3902 | 540 | 0.2538 |
0.0247 | 4.4715 | 550 | 0.2522 |
0.0413 | 4.5528 | 560 | 0.2484 |
0.0195 | 4.6341 | 570 | 0.2399 |
0.0211 | 4.7154 | 580 | 0.2392 |
0.0176 | 4.7967 | 590 | 0.2457 |
0.0251 | 4.8780 | 600 | 0.2409 |
0.0213 | 4.9593 | 610 | 0.2332 |
0.0236 | 5.0407 | 620 | 0.2354 |
0.0181 | 5.1220 | 630 | 0.2347 |
0.0194 | 5.2033 | 640 | 0.2353 |
0.0174 | 5.2846 | 650 | 0.2340 |
0.0169 | 5.3659 | 660 | 0.2296 |
0.0193 | 5.4472 | 670 | 0.2252 |
0.0161 | 5.5285 | 680 | 0.2230 |
0.02 | 5.6098 | 690 | 0.2254 |
0.0185 | 5.6911 | 700 | 0.2251 |
0.0185 | 5.7724 | 710 | 0.2211 |
0.0141 | 5.8537 | 720 | 0.2191 |
0.0198 | 5.9350 | 730 | 0.2226 |
0.0427 | 6.0163 | 740 | 0.2130 |
0.0147 | 6.0976 | 750 | 0.2478 |
0.0139 | 6.1789 | 760 | 0.2450 |
0.0149 | 6.2602 | 770 | 0.2423 |
0.0161 | 6.3415 | 780 | 0.2384 |
0.0148 | 6.4228 | 790 | 0.2347 |
0.0179 | 6.5041 | 800 | 0.2346 |
0.0138 | 6.5854 | 810 | 0.2311 |
0.0172 | 6.6667 | 820 | 0.2293 |
0.043 | 6.7480 | 830 | 0.1678 |
0.0147 | 6.8293 | 840 | 0.1679 |
0.0167 | 6.9106 | 850 | 0.1645 |
0.017 | 6.9919 | 860 | 0.1646 |
0.0118 | 7.0732 | 870 | 0.1650 |
0.0125 | 7.1545 | 880 | 0.1635 |
0.0194 | 7.2358 | 890 | 0.1617 |
0.0092 | 7.3171 | 900 | 0.1600 |
0.0105 | 7.3984 | 910 | 0.1594 |
0.014 | 7.4797 | 920 | 0.1589 |
0.0168 | 7.5610 | 930 | 0.1562 |
0.0094 | 7.6423 | 940 | 0.1554 |
0.0114 | 7.7236 | 950 | 0.1546 |
0.0116 | 7.8049 | 960 | 0.1531 |
0.0295 | 7.8862 | 970 | 0.1472 |
0.0155 | 7.9675 | 980 | 0.1497 |
0.0144 | 8.0488 | 990 | 0.1507 |
0.0109 | 8.1301 | 1000 | 0.1503 |
0.0257 | 8.2114 | 1010 | 0.1361 |
0.0092 | 8.2927 | 1020 | 0.1399 |
0.0122 | 8.3740 | 1030 | 0.1411 |
0.011 | 8.4553 | 1040 | 0.1422 |
0.0108 | 8.5366 | 1050 | 0.1404 |
0.0088 | 8.6179 | 1060 | 0.1403 |
0.0128 | 8.6992 | 1070 | 0.1417 |
0.0146 | 8.7805 | 1080 | 0.1399 |
0.0109 | 8.8618 | 1090 | 0.1370 |
0.013 | 8.9431 | 1100 | 0.1367 |
0.0083 | 9.0244 | 1110 | 0.1363 |
0.0113 | 9.1057 | 1120 | 0.1379 |
0.0212 | 9.1870 | 1130 | 0.1272 |
0.0086 | 9.2683 | 1140 | 0.1267 |
0.0131 | 9.3496 | 1150 | 0.1281 |
0.0093 | 9.4309 | 1160 | 0.1274 |
0.0092 | 9.5122 | 1170 | 0.1260 |
0.0115 | 9.5935 | 1180 | 0.1253 |
0.0093 | 9.6748 | 1190 | 0.1227 |
0.0114 | 9.7561 | 1200 | 0.1224 |
0.0101 | 9.8374 | 1210 | 0.1218 |
0.0129 | 9.9187 | 1220 | 0.1227 |
0.0084 | 10.0 | 1230 | 0.1225 |
0.0203 | 10.0813 | 1240 | 0.1173 |
0.0086 | 10.1626 | 1250 | 0.1115 |
0.009 | 10.2439 | 1260 | 0.1112 |
0.0082 | 10.3252 | 1270 | 0.1139 |
0.0076 | 10.4065 | 1280 | 0.1124 |
0.0081 | 10.4878 | 1290 | 0.1120 |
0.0074 | 10.5691 | 1300 | 0.1103 |
0.0089 | 10.6504 | 1310 | 0.1083 |
0.0088 | 10.7317 | 1320 | 0.1079 |
0.0084 | 10.8130 | 1330 | 0.1079 |
0.0114 | 10.8943 | 1340 | 0.1059 |
0.0112 | 10.9756 | 1350 | 0.1068 |
0.0094 | 11.0569 | 1360 | 0.1051 |
0.0101 | 11.1382 | 1370 | 0.1050 |
0.0076 | 11.2195 | 1380 | 0.1037 |
0.0077 | 11.3008 | 1390 | 0.1032 |
0.0085 | 11.3821 | 1400 | 0.1021 |
0.009 | 11.4634 | 1410 | 0.1021 |
0.0082 | 11.5447 | 1420 | 0.1017 |
0.0179 | 11.6260 | 1430 | 0.0983 |
0.0073 | 11.7073 | 1440 | 0.0973 |
0.0066 | 11.7886 | 1450 | 0.0984 |
0.0091 | 11.8699 | 1460 | 0.0983 |
0.0065 | 11.9512 | 1470 | 0.0974 |
0.0081 | 12.0325 | 1480 | 0.1009 |
0.0086 | 12.1138 | 1490 | 0.0971 |
0.006 | 12.1951 | 1500 | 0.0975 |
0.0069 | 12.2764 | 1510 | 0.0972 |
0.0087 | 12.3577 | 1520 | 0.0974 |
0.0064 | 12.4390 | 1530 | 0.0978 |
0.0086 | 12.5203 | 1540 | 0.0957 |
0.0059 | 12.6016 | 1550 | 0.0971 |
0.0075 | 12.6829 | 1560 | 0.0951 |
0.0085 | 12.7642 | 1570 | 0.0953 |
0.0167 | 12.8455 | 1580 | 0.0933 |
0.0077 | 12.9268 | 1590 | 0.0914 |
0.0064 | 13.0081 | 1600 | 0.0912 |
0.0081 | 13.0894 | 1610 | 0.0905 |
0.0088 | 13.1707 | 1620 | 0.0919 |
0.0155 | 13.2520 | 1630 | 0.0894 |
0.0066 | 13.3333 | 1640 | 0.0875 |
0.0066 | 13.4146 | 1650 | 0.0874 |
0.0065 | 13.4959 | 1660 | 0.0874 |
0.0061 | 13.5772 | 1670 | 0.0870 |
0.0056 | 13.6585 | 1680 | 0.0867 |
0.0063 | 13.7398 | 1690 | 0.0870 |
0.0075 | 13.8211 | 1700 | 0.0869 |
0.0087 | 13.9024 | 1710 | 0.0863 |
0.0055 | 13.9837 | 1720 | 0.0861 |
0.007 | 14.0650 | 1730 | 0.0862 |
0.0064 | 14.1463 | 1740 | 0.0859 |
0.0069 | 14.2276 | 1750 | 0.0857 |
0.015 | 14.3089 | 1760 | 0.0850 |
0.0069 | 14.3902 | 1770 | 0.0845 |
0.0078 | 14.4715 | 1780 | 0.0846 |
0.0052 | 14.5528 | 1790 | 0.0855 |
0.0067 | 14.6341 | 1800 | 0.0844 |
0.0065 | 14.7154 | 1810 | 0.0839 |
0.0067 | 14.7967 | 1820 | 0.0838 |
0.0053 | 14.8780 | 1830 | 0.0840 |
0.0062 | 14.9593 | 1840 | 0.0839 |
0.0063 | 15.0407 | 1850 | 0.0834 |
0.006 | 15.1220 | 1860 | 0.0832 |
0.0068 | 15.2033 | 1870 | 0.0830 |
0.0056 | 15.2846 | 1880 | 0.0830 |
0.0056 | 15.3659 | 1890 | 0.0827 |
0.0069 | 15.4472 | 1900 | 0.0825 |
0.0061 | 15.5285 | 1910 | 0.0825 |
0.0129 | 15.6098 | 1920 | 0.0824 |
0.0072 | 15.6911 | 1930 | 0.0822 |
0.0062 | 15.7724 | 1940 | 0.0822 |
0.0066 | 15.8537 | 1950 | 0.0822 |
0.0076 | 15.9350 | 1960 | 0.0821 |
0.0067 | 16.0163 | 1970 | 0.0821 |
0.0138 | 16.0976 | 1980 | 0.0820 |
0.0068 | 16.1789 | 1990 | 0.0820 |
0.0053 | 16.2602 | 2000 | 0.0820 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2