KoT5_news_summarization
- This model is a lcw99/t5-base-korean-text-summary finetuned on the daekeun-ml/naver-news-summarization-ko
Model description
<<20221021 Commit>>
νλ‘μ νΈμ©μΌλ‘ λ΄μ€ μμ½ λͺ¨λΈ νΉνλ λͺ¨λΈμ λ§λ€κΈ° μν΄ lcw99λμ t5-base-korean-text-summary λͺ¨λΈμ μΆκ°μ μΌλ‘ daekeun-mlλμ΄ μ 곡ν΄μ£Όμ naver-news-summarization-ko λ°μ΄ν°μ μΌλ‘ νμΈνλ νμ΅λλ€.
νμ¬ μ κ° κ°μ§κ³ μλ λ΄μ€ λ°μ΄ν°λ‘ μΆκ° νμ΅ μ§ν μμ μ λλ€. μ§μμ μΌλ‘ λ°μ μμΌ μ’μ μ±λ₯μ λͺ¨λΈμ ꡬννκ² μ΅λλ€. κ°μ¬ν©λλ€.
μ€ννκ²½
- Google Colab Pro
- CPU : Intel(R) Xeon(R) CPU @ 2.20GHz
- GPU : A100-SXM4-40GB
# Python Code
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("noahkim/KoT5_news_summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("noahkim/KoT5_news_summarization")
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4513 | 1.0 | 2775 | 0.4067 |
0.42 | 2.0 | 5550 | 0.3933 |
0.395 | 3.0 | 8325 | 0.3864 |
0.3771 | 4.0 | 11100 | 0.3872 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 205