medfalcon-40b-lora / README.md
nmitchko's picture
Update README.md
ead6e81
|
raw
history blame
1.72 kB
metadata
language:
  - en
library_name: peft
pipeline_tag: text-generation
tags:
  - medical
license: cc-by-nc-3.0

MedFalcon 40b LoRA

Model Description

Architecture

nmitchko/medfalcon-40b-lora is a large language model LoRa specifically fine-tuned for medical domain tasks. It is based on Falcon-40b-instruct at 40 billion parameters.

The primary goal of this model is to improve question-answering and medical dialogue tasks. It was trained using LoRA, specifically QLora, to reduce memory footprint.

This Lora supports 4-bit and 8-bit modes.

Requirements

bitsandbytes>=0.39.0
peft
transformers

Steps to load this model:

  1. Load base model using QLORA
  2. Apply LoRA using peft
# 
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-40b-instruct"
LoRA = "nmitchko/medfalcon-40b-lora"

tokenizer = AutoTokenizer.from_pretrained(model)

model = AutoModelForCausalLM.from_pretrained(model,
    load_in_8bit=load_8bit,
    torch_dtype=torch.float16,
    trust_remote_code=True,
)

model = PeftModel.from_pretrained(model, LoRA)

pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)

sequences = pipeline(
   "What does the drug ceftrioxone do?\nDoctor:",
    max_length=200,
    do_sample=True,
    top_k=40,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)

for seq in sequences:
    print(f"Result: {seq['generated_text']}")