|
--- |
|
library_name: peft |
|
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ |
|
license: apache-2.0 |
|
datasets: |
|
- nmarafo/truthful_qa_TrueFalse-Feedback |
|
language: |
|
- en |
|
- es |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
This is an adapter prepared to return True or False depending on whether the student's answer ("student_answer") is correct based on the question ("question") and comparing it with a given answer ("best_answer"). |
|
The prompt has the following structure: |
|
``` |
|
<s>[INST]Analyze the question, the expected answer, and the student's response. |
|
Determine if the student's answer is correct or not. It only returns True if the student's answer is correct with respect to the expected answer or False otherwise. |
|
Add a brief comment explaining why the answer is correct or incorrect.\n\n |
|
Question: {question}\n |
|
Expected Answer: {best_answer}\n |
|
Student Answer: {student_answer}[/INST]" |
|
``` |
|
|
|
|
|
## How to Get Started with the Model |
|
In Google Colab: |
|
``` |
|
|
|
!pip install -q -U transformers peft accelerate optimum |
|
!pip install datasets==2.15.0 |
|
!pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu117/ |
|
|
|
from peft import AutoPeftModelForCausalLM |
|
from rich import print |
|
from transformers import GenerationConfig, AutoTokenizer |
|
|
|
import torch |
|
|
|
model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ" |
|
adapter = "nmarafo/Mistral-7B-Instruct-v0.2-TrueFalse-Feedback-GPTQ" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, return_token_type_ids=False) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoPeftModelForCausalLM.from_pretrained(adapter, low_cpu_mem_usage=True, return_dict=True, torch_dtype=torch.float16, device_map="cuda") |
|
|
|
def predict(question, best_answer, student_answer): |
|
system_message = "Analyze the question, the expected answer, and the student's response. Determine if the student's answer is conceptually correct in relation to the expected answer, regardless of the exact wording. Return True if the student's answer is correct or False otherwise. Add a brief comment explaining the rationale behind the answer being correct or incorrect." |
|
prompt = f"{system_message}\n\nQuestion: {question}\nBest Answer: {best_answer}\nStudent Answer: {student_answer}" |
|
prompt_template=f"<s>[INST]{prompt}[/INST]" |
|
|
|
encoding = tokenizer(prompt_template, return_tensors='pt', padding=True, truncation=True, max_length=512) |
|
input_ids = encoding['input_ids'].cuda() |
|
attention_mask = encoding['attention_mask'].cuda() |
|
|
|
output = model.generate(input_ids, attention_mask=attention_mask, |
|
temperature=0.7, do_sample=True, top_p=0.95, |
|
top_k=40, max_new_tokens=512, pad_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return response |
|
|
|
question="Mention all the Canary Island" |
|
best_answer="Tenerife, Fuerteventura, Gran Canaria, Lanzarote, La Palma, La Gomera, El Hierro, La Graciosa" |
|
student_answer="Tenerife" |
|
|
|
print(predict(question, best_answer, student_answer)) |
|
|
|
``` |
|
|
|
# To perform inference on the test dataset example load the model from the checkpoint |
|
persisted_model = AutoPeftModelForCausalLM.from_pretrained( |
|
adapter, |
|
low_cpu_mem_usage=True, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map="cuda") |
|
# Some gen config knobs |
|
generation_config = GenerationConfig( |
|
penalty_alpha=0.6, |
|
do_sample = True, |
|
top_k=5, |
|
temperature=0.5, |
|
repetition_penalty=1.2, |
|
max_new_tokens=512 |
|
) |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |