Quantized using AutoFP8 with this script:

from transformers import AutoTokenizer
import auto_fp8
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig

pretrained_model_dir = "ibm-granite/granite-20b-code-base"
quantized_model_dir = "granite-20b-code-base-FP8"

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)

# use some code to calibrate
import auto_fp8
tmp = auto_fp8.__file__.split('/')[:-1]
tmp.append('quantize.py')
seed_text_file = '/'.join(tmp)

with open(seed_text_file, "r") as f:
    text = f.read()

examples = [text]

examples = tokenizer(examples, return_tensors="pt").to("cuda")

quantize_config = BaseQuantizeConfig(
    quant_method="fp8",
    activation_scheme="static",
    ignore_patterns=["re:.*lm_head"],
)

model = AutoFP8ForCausalLM.from_pretrained(
    pretrained_model_dir, quantize_config=quantize_config
)

model.quantize(examples)
model.save_quantized(quantized_model_dir)
Downloads last month
30
Safetensors
Model size
20.1B params
Tensor type
BF16
·
F8_E4M3
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.