Created using AutoFP8:
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "meta-llama/Llama-2-70b-chat-hf"
quantized_model_dir = "Llama-2-70b-chat-hf-FP8"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=False)
tokenizer.pad_token = tokenizer.eos_token
# Load and tokenize all dataset samples for calibration of activation scales
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft")
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt", max_length=4096).to("cuda")
print(examples)
# Define quantization config with static activation scales
quantize_config = BaseQuantizeConfig(
quant_method="fp8",
activation_scheme="static",
ignore_patterns=["re:.*lm_head"],
)
# Load the model, quantize, and save checkpoint
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
model.quantize(examples)
model.save_quantized(quantized_model_dir)
Evaluation:
vllm (pretrained=meta-llama/Llama-2-70b-chat-hf,tensor_parallel_size=2,distributed_executor_backend=ray), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.5307|± |0.0137|
| | |strict-match | 5|exact_match|↑ |0.5064|± |0.0138|
vllm (pretrained=nm-testing/Llama-2-70b-chat-hf-FP8,tensor_parallel_size=2,distributed_executor_backend=ray), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.5625|± |0.0137|
| | |strict-match | 5|exact_match|↑ |0.5428|± |0.0137|
- Downloads last month
- 160
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.