Built with Axolotl

See axolotl config

axolotl version: 0.4.1

###
# Model Configuration: LLaMA-3 70B
###

base_model: NousResearch/Hermes-3-Llama-3.1-8B
# base_model: NousResearch/Hermes-3-Llama-3.1-70B
sequence_len: 1024

# base model weight quantization
load_in_8bit: true
# load_in_4bit: true

# attention implementation
flash_attention: true

# finetuned adapter config
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
  - embed_tokens
  - lm_head
# for details, see https://github.com/huggingface/peft/issues/334#issuecomment-1561727994

###
# Dataset Configuration: sqlqa
###
# datasets:
#   - path: data.jsonl
#     type: alpaca

datasets:
  - path: data.jsonl
    ds_type: json
    type:
      field_instruction: instruction
      field_input: input
      field_output: output
      format: |-
        [INST] {instruction}
        {input} [/INST]

chat_template: llama3
tokens:
  - "[INST]"
  - " [/INST]"
  - "[QL]"
  - " [/QL]"
  - "[EXPLANATION]"
  - " [/EXPLANATION]"
# dataset formatting config

special_tokens:
  pad_token: <|end_of_text|>

val_set_size: 0.05

###
# Training Configuration
###

# masks the input messages so that the model learns and understands the language w/o being reliant on the input
train_on_inputs: false
# random seed for better reproducibility
seed: 117

# optimizer config
optimizer: adamw_bnb_8bit
learning_rate: 0.0001
lr_scheduler: cosine
num_epochs: 4
micro_batch_size: 4
gradient_accumulation_steps: 1
warmup_steps: 10

# axolotl saving config
dataset_prepared_path: last_run_prepared
output_dir: ./lora-out

# logging and eval config
logging_steps: 1
eval_steps: 0.05

# training performance optimization config
bf16: auto
tf32: false
gradient_checkpointing: true

###
# Miscellaneous Configuration
###

# when true, prevents over-writing the config from the CLI
strict: false

# "Don't mess with this, it's here for accelerate and torchrun" -- axolotl docs
local_rank:

# WANDB
wandb_mode:
wandb_project:
wandb_watch:
wandb_name:
wandb_run_id:

# Multi-GPU
# deepspeed: /root/axolotl/deepspeed_configs/zero3_bf16.json
# deepspeed: zero3_bf16.json
# deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
deepspeed:
fsdp:
fsdp_config:

lora-out

This model is a fine-tuned version of NousResearch/Hermes-3-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 117
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.1647 0.0769 1 2.2016
2.1505 0.2308 3 2.1168
1.7332 0.4615 6 1.5604
1.0807 0.6923 9 0.8788
0.5284 0.9231 12 0.4853
0.3215 1.1538 15 0.2911
0.2114 1.3846 18 0.1958
0.1493 1.6154 21 0.1374
0.1081 1.8462 24 0.1066
0.0751 2.0769 27 0.0821
0.0782 2.3077 30 0.0689
0.0524 2.5385 33 0.0602
0.0538 2.7692 36 0.0523
0.0442 3.0 39 0.0464
0.0385 3.2308 42 0.0417
0.0358 3.4615 45 0.0410
0.0336 3.6923 48 0.0388
0.0336 3.9231 51 0.0391

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.0
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nl-to-logql/llama-3.1-logql

Adapter
(171)
this model