See axolotl config
axolotl version: 0.4.1
###
# Model Configuration: LLaMA-3 70B
###
base_model: NousResearch/Hermes-3-Llama-3.1-8B
# base_model: NousResearch/Hermes-3-Llama-3.1-70B
sequence_len: 1024
# base model weight quantization
load_in_8bit: true
# load_in_4bit: true
# attention implementation
flash_attention: true
# finetuned adapter config
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
- embed_tokens
- lm_head
# for details, see https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
###
# Dataset Configuration: sqlqa
###
# datasets:
# - path: data.jsonl
# type: alpaca
datasets:
- path: data.jsonl
ds_type: json
type:
field_instruction: instruction
field_input: input
field_output: output
format: |-
[INST] {instruction}
{input} [/INST]
chat_template: llama3
tokens:
- "[INST]"
- " [/INST]"
- "[QL]"
- " [/QL]"
- "[EXPLANATION]"
- " [/EXPLANATION]"
# dataset formatting config
special_tokens:
pad_token: <|end_of_text|>
val_set_size: 0.05
###
# Training Configuration
###
# masks the input messages so that the model learns and understands the language w/o being reliant on the input
train_on_inputs: false
# random seed for better reproducibility
seed: 117
# optimizer config
optimizer: adamw_bnb_8bit
learning_rate: 0.0001
lr_scheduler: cosine
num_epochs: 4
micro_batch_size: 4
gradient_accumulation_steps: 1
warmup_steps: 10
# axolotl saving config
dataset_prepared_path: last_run_prepared
output_dir: ./lora-out
# logging and eval config
logging_steps: 1
eval_steps: 0.05
# training performance optimization config
bf16: auto
tf32: false
gradient_checkpointing: true
###
# Miscellaneous Configuration
###
# when true, prevents over-writing the config from the CLI
strict: false
# "Don't mess with this, it's here for accelerate and torchrun" -- axolotl docs
local_rank:
# WANDB
wandb_mode:
wandb_project:
wandb_watch:
wandb_name:
wandb_run_id:
# Multi-GPU
# deepspeed: /root/axolotl/deepspeed_configs/zero3_bf16.json
# deepspeed: zero3_bf16.json
# deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
deepspeed:
fsdp:
fsdp_config:
lora-out
This model is a fine-tuned version of NousResearch/Hermes-3-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0391
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 117
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1647 | 0.0769 | 1 | 2.2016 |
2.1505 | 0.2308 | 3 | 2.1168 |
1.7332 | 0.4615 | 6 | 1.5604 |
1.0807 | 0.6923 | 9 | 0.8788 |
0.5284 | 0.9231 | 12 | 0.4853 |
0.3215 | 1.1538 | 15 | 0.2911 |
0.2114 | 1.3846 | 18 | 0.1958 |
0.1493 | 1.6154 | 21 | 0.1374 |
0.1081 | 1.8462 | 24 | 0.1066 |
0.0751 | 2.0769 | 27 | 0.0821 |
0.0782 | 2.3077 | 30 | 0.0689 |
0.0524 | 2.5385 | 33 | 0.0602 |
0.0538 | 2.7692 | 36 | 0.0523 |
0.0442 | 3.0 | 39 | 0.0464 |
0.0385 | 3.2308 | 42 | 0.0417 |
0.0358 | 3.4615 | 45 | 0.0410 |
0.0336 | 3.6923 | 48 | 0.0388 |
0.0336 | 3.9231 | 51 | 0.0391 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0
- Downloads last month
- 5
Model tree for nl-to-logql/llama-3.1-logql
Base model
meta-llama/Llama-3.1-8B
Finetuned
NousResearch/Hermes-3-Llama-3.1-8B