metadata
tags:
- fp8
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: image-text-to-text
license: apache-2.0
library_name: vllm
base_model:
- mistral-community/pixtral-12b
- mistralai/Pixtral-12B-2409
base_model_relation: quantized
datasets:
- HuggingFaceH4/ultrachat_200k
Pixtral-12B-2409: FP8 Dynamic Quant + FP8 KV Cache
Quant of mistral-community/pixtral-12b using LLM Compressor for optimised inference on VLLM.
FP8 dynamic quant on language model, and FP8 quant of KV cache. multi_modal_projector and vision_tower left in FP16 since it's a small part of the model.
Calibrated on 2048 ultrachat samples.
Example VLLM usage
vllm serve nintwentydo/pixtral-12b-FP8-dynamic-FP8-KV-cache --quantization fp8 --kv-cache-dtype fp8
Supported on Nvidia GPUs with compute capability > 8.9 (Ada Lovelace, Hopper).
Edit: Something seems to be wrong with the tokenizer. If you have any issues add --tokenizer mistral-community/pixtral-12b
to your VLLM command line args.