wav2vec2-large-xlsr-tamil-commonvoice

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6145
  • Wer: 0.8512

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
12.0478 1.05 100 3.3867 1.0
3.2522 2.11 200 3.2770 1.0
3.1689 3.16 300 3.1135 1.0039
2.9278 4.21 400 2.0485 1.3109
1.3592 5.26 500 0.8044 1.0988
0.7472 6.32 600 0.6571 0.9474
0.5842 7.37 700 0.6079 0.9477
0.4831 8.42 800 0.6083 0.9491
0.4259 9.47 900 0.5916 0.8973
0.3817 10.53 1000 0.6070 0.9147
0.338 11.58 1100 0.5873 0.8617
0.3123 12.63 1200 0.5983 0.8844
0.287 13.68 1300 0.6146 0.8988
0.2706 14.74 1400 0.6068 0.8754
0.2505 15.79 1500 0.5996 0.8638
0.2412 16.84 1600 0.6106 0.8481
0.2176 17.89 1700 0.6152 0.8520
0.2255 18.95 1800 0.6150 0.8540
0.216 20.0 1900 0.6145 0.8512

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu102
  • Datasets 1.13.3
  • Tokenizers 0.10.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nikhil6041/wav2vec2-large-xlsr-tamil-commonvoice